K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2017
trả lời hay lắm bạn

Xét (O) có

ΔACB nội tiếp

AB là đường kính

=>ΔACB vuông tại C

ΔOCD cân tại O

mà OI là đường cao

nên I là trung điểm của CD

=>IC=ID=CD/2=8cm

Xét ΔCAB vuông tại C cso CI là đường cao

nên CI^2=IA*IB

=>8^2=6*IB

=>IB=64/6=32/3(cm)

AB=IB+IA=32/3+6=50/3(cm)

=>R=50/3:2=25/3(cm)

10 tháng 12 2023

a: kẻ OH\(\perp\)CD tại H

Ta có: OH\(\perp\)CD

AP\(\perp\)CD

QB\(\perp\)CD

Do đó: OH//AP//QB

Xét hình thang ABQP(AP//QB) có

O là trung điểm của AB

OH//AP//BQ

Do đó: H là trung điểm của PQ

=>HP=HQ

Ta có: ΔOCD cân tại O

mà OH là đường cao

nên H là trung điểm của CD

=>HC=HD

Ta có: HC+CP=HP

HD+DQ=HQ

mà HP=HQ và HC=HD

nên CP=DQ

b: Ta có: ΔOCD vuông tại O

=>\(OC^2+OD^2=CD^2\)

=>\(CD^2=R^2+R^2=2R^2\)

=>\(CD=R\sqrt{2}\)

Xét ΔOAC có OA=OC=AC=R

nên ΔOAC đều

=>\(\widehat{CAO}=60^0\)

=>\(\widehat{CAB}=60^0\)

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét ΔCAB vuông tại C có \(sinCAB=\dfrac{CB}{AB}\)

=>\(\dfrac{CB}{2R}=sin60=\dfrac{\sqrt{3}}{2}\)

=>\(CB=R\sqrt{3}\)

 

14 tháng 7 2020

Jrouf8o7o98auoxur9hc9keuoa

21 tháng 12 2020

PS. Em đã làm được rồi ạ.

NV
21 tháng 12 2020

\(ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

\(\left\{{}\begin{matrix}\widehat{ACB}+\widehat{BCH}=90^0\\\widehat{CBH}+\widehat{BCH}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{ACB}=\widehat{CBH}\)

\(\Rightarrow\widehat{ABC}=\widehat{CBH}\)

NV
12 tháng 9 2021

b.

Áp dụng định lý Pitago trong tam giác vuông COI:

\(CI=\sqrt{OC^2+OI^2}=\sqrt{R^2+\left(\dfrac{R}{3}\right)^2}=\dfrac{R\sqrt{10}}{3}\)

Do 2 tam giác COI và CED đồng dạng

\(\Rightarrow\dfrac{CE}{CO}=\dfrac{CD}{CI}\Rightarrow CE=\dfrac{CD.CO}{CI}=\dfrac{2R.R}{\dfrac{R\sqrt{10}}{3}}=\dfrac{3R\sqrt{10}}{5}\)

NV
12 tháng 9 2021

undefined