Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ * dựa vào tính chất đường trung tuyến ứng vs 1 cạnh = 1/2 cạnh ấy thì tam giác đó vuông ta sẽ CM đc tg BCD vuông tại C
*Có AC=AB(vì đg thẳng là tiếp tuyến của đg tròn vuông góc với bk đi qua tiếp điểm)
=>A cách đều A và B
=>AH vuông góc BC
b/Áp dụng hệ thức lượng trong tam giác vuông ABO có : OH.OA=OB^2=R^2
mk cx đg làm bài này nhg ms chỉ đến đây thôi
OABCDHEMNFK
a) Do C thuộc đường tròn mà DB là đường kính nên góc \(\widehat{BCD}\) chắn nửa đường tròn.
\(\Rightarrow\widehat{BCD}=90^o\Rightarrow BC\perp DC\)
Theo tính chất hai tiếp tuyến cắt nhau, ta có OH là phân giác góc BOC. Lại có OBC là tam giác cân tại O nên OH cũng là đường cao.
Vậy \(OH\perp BC\)
b) Xét tam giác vuông OCA có CH là đường cao nên áp dụng hệ thức lượng trong tam giác vuông, ta có: \(OH.OA=OC^2=R^2\)
Xét tam giác vuông DBA có đường cao BE nên áp dụng hệ thức lượng trong tam giác vuông, ta có:
\(DE.DA=BD^2=\left(2R\right)^2=4R^2\)
c) Xét tam giác MBA có OH và BE là các đường cao nên N là trực tâm.
Vậy thì \(MN\perp BA\)
Lại có \(BD\perp BA\) nên BD // MN.
d) Ta chứng minh \(OF\perp AD\)
Ta có \(\widehat{BCA}=\widehat{DCO}\) (Cùng phụ với góc OCB)
\(\Rightarrow\widehat{BCA}+90^o=\widehat{DCO}+90^o\Rightarrow\widehat{DCA}=\widehat{FCO}\) (1)
Ta cũng có tứ giác ABOC nội tiếp nên \(\widehat{CAO}=\widehat{CBO}\)
Mà \(\widehat{CBO}=\widehat{CDF}\) (Cùng phụ với góc CFD)
\(\Rightarrow\widehat{CAO}=\widehat{CDF}\)
Vậy thì \(\Delta CAO\sim\Delta CDF\left(g-g\right)\Rightarrow\frac{CA}{CD}=\frac{CO}{CF}\Rightarrow\frac{CA}{CO}=\frac{CD}{CF}\) (2)
Từ (1) và (2) suy ra \(\Delta DCA\sim\Delta FCO\left(c-g-c\right)\Rightarrow\widehat{ADC}=\widehat{OFC}\)
\(\Rightarrow\widehat{ADF}-\widehat{CDF}=\widehat{CFD}-\widehat{OFD}\)
\(\Rightarrow\widehat{ADF}+\widehat{OFD}=\widehat{CFD}+\widehat{CDF}=90^o\)
\(\Rightarrow\widehat{DKF}=90^o\Rightarrow OF\perp AD\)
Xét tam giác cân DOE có OK là đường cao nên đồng thời là trung tuyến. Vậy K là trung điểm DE.
Xét tam giác vuông ABD có BE là đường cao nên \(\frac{1}{BE^2}=\frac{1}{BA^2}+\frac{1}{BD^2}=\frac{1}{5R^2}+\frac{1}{4R^2}=\frac{9}{20R^2}\)
\(\Rightarrow BE^2=\frac{20R^2}{9}\)
Xét tam giác vuông BED, theo định lý Pi-ta-go ta có:
\(DE^2=BD^2-BE^2=4R^2-\frac{20R^2}{9}=\frac{16R^2}{9}\)
\(\Rightarrow DE=\frac{4R}{3}\)
\(\Rightarrow KE=\frac{2R}{3}\)
O A C B D H I M
a) Tam giác COD và HOD là các tam giác vuông có chung cạnh huyền OD nên O, H, D, C cùng thuộc đường tròn đường kính OD.
b) Theo tính chất hai tiếp tuyến cắt nhau, ta có \(OD\perp BC\)
Tam giác DIA và DHA là hai tam giác vuông có chung cạnh AD nên DIHA là tứ giác nội tiếp.
Vậy thì \(\widehat{IDA}=\widehat{IHO}\)
Từ đó ta có \(\Delta IOH\sim\Delta AOD\left(g-g\right)\Rightarrow\frac{OI}{OA}=\frac{OH}{OD}\Rightarrow OH.OA=OI.OD\)
c) Xét tam giác vuông DBO, chiều cao BI, ta có:
\(OI.OD=OB^2\) (Hệ thức lượng)
Mà \(OB^2=OM^2;OI.OD=OH.OA\Rightarrow OM^2=OH.OA\)
\(\Rightarrow\Delta OHM\sim\Delta OMA\left(c-g-c\right)\Rightarrow\widehat{OMA}=\widehat{OHM}=90^o\)
Vậy AM là tiếp tuyến của đường tròn (O).
Cô hướng dẫn nhé.
a) Theo tính chất của hai tiếp tuyến cắt nhau, ta có \(OA\perp BC\)
Xét tam giác vuông OBA có đường cao BH, áp dụng hệ thức lượng trong tam giác vuông ta có:
\(OH.OA=OB^2=R^2\)
b) Ta thấy rằng \(\widehat{BCD}\) chắn nửa đường tròn nên \(\widehat{BCD}=90^o\)
\(\Rightarrow DC\perp BC\)
Theo tính chất từ vuông góc tới song song ta có OA // CD
Ta cũng thấy ngay \(\Delta OCA\sim\Delta DKC\left(g-g\right)\Rightarrow\frac{AO}{CD}=\frac{AC}{CK}\Rightarrow AC.CD=CK.AO\)