Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc OBA+góc OCA=180 độ
=>OBAC nội tiếp
b: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>AH*AO=AB^2
Xét ΔABD và ΔAEB có
góc ABD=góc AEB
góc BAD chung
=>ΔABD đồng dạng với ΔAEB
=>AB^2=AD*AE=AH*AO
Bo de \(AD.AE=AC^2\) (ban tu chung minh nha , cu tam giac dong dang la ra )
xet \(AD+AE=AD+DH+AD+HE=AH+AD+DH=2AH\)
=> \(\frac{1}{AD}+\frac{1}{AE}=\frac{AD+AE}{AD.AE}=\frac{2AH}{AC^2}\) (1)
ta phai cm \(\frac{2AH}{AC^2}=\frac{2}{AK}\Leftrightarrow AH.AK=AC^2\) (2)
do H la trung diem DE => \(OH\perp DE=>\widehat{ABO}=\widehat{AHO}=\widehat{ACO}=90^0\)
=> A,B,O,H,C thuoc duong tron duong kinh AO
=> \(\widehat{AHC}=\widehat{ABC}\left(\frac{1}{2}sd\widebat{AC}\right)\)
ma \(\widehat{ABC}=\widehat{ACK}\) tinh chat 2 tiep tuyen cat nhau
=> \(\widehat{ACK}=\widehat{AHC}\) lai co \(\widehat{CAK}=\widehat{HAC}\)
=> \(\Delta AKC\approx\Delta ACH\left(g-g\right)\)
=> \(\frac{AK}{AC}=\frac{AC}{AH}\Leftrightarrow AK.AH=AC^2\) (3)
Tu (1),(2),(3) ta co dpcm
a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC
HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA
b, Ta có K D C ^ = A O D ^ (cùng phụ với góc O B C ^ )
=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO
c, Ta có: M B A ^ = 90 0 - O B M ^ và M B C ^ = 90 0 - O M B ^
Mà O M B ^ = O B M ^ (∆OBM cân) => M B A ^ = M B C ^
=> MB là phân giác A B C ^ . Mặt khác AM là phân giác B A C ^
Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC
d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A
=> CA = AB = AP => A là trung điểm CK