Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ một điểm A nằm bên ngoài đường tròn ( O ), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm )
a) Chứng minh rằng ABOC là tứ giác nội tiếp
b)Cho bán kính đường tròn ( O ) bằng 3cm, độ dài đoạn thẳng OA bằng 5cm. Tính độ dài đoạn thẳng BC
c) Gọi ( K ) là đường tròn qua A và tiếp xúc với đường thẳng BC tạo C. Đường trknf (K) và đường tròn (O ) cắt nhau tại điểm thứ hai là M. Chứng minh rằng đường thẳng BM đi qua trung điểm của đoạn thẳng AC
a) Xét tứ giác AEOF có
\(\widehat{AEO}\) và \(\widehat{AFO}\) là hai góc đối
\(\widehat{AEO}+\widehat{AFO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AEOF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
(Bài này có dính líu đến tứ giác nội tiếp một chút, không biết bạn học chưa. Mình sẽ cố né nội dung đó.)
\(A,O,B,C\) cùng thuộc đường tròn đường kính \(AO\).
\(B,O,C,E\) cùng thuộc đường tròn đường kính \(BE\).
(Bạn có thể chứng minh 2 điều này bằng các góc vuông)
Mà đường tròn ngoại tiếp tam giác \(BOC\) chỉ có 1 nên \(A,B,O,C,E\) cùng thuộc đường tròn.
\(AECO\) là hình thang nội tiếp nên nó là hình thang cân.
Từ đó CM được \(GA=GO,IA=IO\) và suy ra \(IG\) là đường trung trực của \(OA\).
DFCE nội tiếp
=>góc DFE=góc DCE=90 độ
ΔDOF đồng dạng với ΔDAB
=>DO/DA=DF/DB(1)
ΔOAB vuông tại B
=>OA^2=BO^2+BA^2
=>AB=Rcăn 3
=>DA=R căn 7
(1) =>R/Rcăn7=DF/2R
=>DF=2R/căn 7
Kẻ BH vuông góc DA
\(S_{ABD}=\dfrac{1}{2}\cdot BD\cdot AB=\dfrac{1}{2}\cdot BH\cdot DA\)
=>BH=2*Rcăn 3/căn 7
=>\(S_{BDF}=\dfrac{2R^2\sqrt{3}}{7}\)
Câu c.
Gọi K là trung điểm của BH
Chỉ ra K là trực tâm của tam giác BMI
Chứng minh MK//EI
Chứng minh M là trung điểm của BE (t.c đường trung bình)
Xét tam giác OKB có:
OI2=IK x IB
mà IB=IC (OI là đường trung trực)
=>OI2=IK x IC (1)
Xét tam giác OAB có:
BI2=OI x IA (2)
Xét tam giác vuông OBI có:
OB2=BI2+OI2=R (3)
Từ (1) và (2) và (3) =>IK x IC+OI x IA=OB2=R2 (CMX)