K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét \(\Delta\)AOB vuông tại B có 

\(\cos\widehat{AOB}=\dfrac{OB}{OA}\)(Tỉ số lượng giác góc nhọn)

\(\Leftrightarrow\cos\widehat{AOB}=\dfrac{R}{2\cdot R}=\dfrac{1}{2}\)

hay \(\widehat{AOB}=60^0\)

Vậy: \(\widehat{AOB}=60^0\)

b) Ta có: ΔOBA vuông tại B(OB⊥BA)

nên \(\widehat{AOB}+\widehat{BAO}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{BAO}=30^0\)

Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: AO là tia phân giác của \(\widehat{BAC}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{BAO}=\widehat{CAO}\)

hay \(\widehat{CAO}=30^0\)

Ta có: \(\widehat{CAO}+\widehat{MAO}=\widehat{MAC}\)(Vì tia AO nằm giữa hai tia AM,AC)

hay \(\widehat{MAO}=60^0\)

Xét ΔMOA có 

\(\widehat{MAO}=60^0\)(cmt)

\(\widehat{MOA}=60^0\)(\(\widehat{AOB}=60^0\))

Do đó: ΔMOA đều(Dấu hiệu nhận biết tam giác đều)

⇒MA=MO(đpcm)

c) Ta có: ΔOBA vuông tại B(OB⊥BA)

mà BI là đường trung tuyến ứng với cạnh huyền OA(I là trung điểm của OA)

nên \(BI=\dfrac{OA}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AI=\dfrac{OA}{2}\)(I là trung điểm của OA)

nên BI=AI(1)

Ta có: ΔOCA vuông tại C(OC⊥CA)

mà CI là đường trung tuyến ứng với cạnh huyền OA(I là trung điểm của OA)

nên \(CI=\dfrac{OA}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AI=\dfrac{AO}{2}\)(I là trung điểm của OA)

nên CI=AI(2)

Từ (1) và (2) suy ra IA=IB=IC

hay I là giao điểm 3 đường trung trực của ΔABC

Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: \(\widehat{BAC}=\widehat{BAO}+\widehat{CAO}\)(tia AO nằm giữa hai tia AB,AC)

hay \(\widehat{BAC}=60^0\)

Xét ΔABC có AB=AC(cmt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

Xét ΔABC cân tại A có \(\widehat{BAC}=60^0\)(cmt)

nên ΔABC đều(Dấu hiệu nhận biết tam giác đều)

Xét ΔABC đều có I là giao điểm 3 đường trung trực của tam giác(cmt)

mà trong tam giác đều, giao điểm 3 đường trung trực cũng chính là giao điểm của 3 đường phân giác(Định lí tam giác đều)

nên I là giao điểm của 3 đường phân giác trong ΔBAC

hay I là tâm đường tròn nội tiếp ΔABC(đpcm)

a: Phải vì góc này tạo bởi tiếp tuyến MA và day cung AB

b: Xét ΔMOA vuông tại A có cosMOA=OA/OM=1/2

=>góc MOA=60 độ

sđ cung AB=2*60=120 độ

c: Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB tại H

=>MH*MO=MA^2

Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA/MD=MC/MA

=>MA^2=MD*MC=MH*MO

 

12 tháng 3 2023

Giúp mình giải câu e với ạ