K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2016

khi BD//AC và BD =R/2

16 tháng 4 2020

412 + (340 - x) = 633

11 tháng 4 2020

*Mình vẽ hình trên GeoGebra nên bạn vào thống kê mình xem*

Xét \(\Delta IDC\) và \(\Delta\)IAB có:

\(\widehat{DIC}=\widehat{AIB}\) (đối đỉnh)

\(\widehat{IDC}=\widehat{IAB}\) (cùng chắn cung BC)

Do đó \(\Delta IDC\)đồng dạng với \(\Delta\)IAB => \(\frac{ID}{IA}=\frac{IC}{IB}=\frac{CD}{AB}\left(1\right)\)

Tương tự ta có: \(\Delta\)IAD đồng dạng \(\Delta\)IBC => \(\frac{IA}{IB}=\frac{ID}{IC}=\frac{DA}{BC}\left(2\right)\)

Từ (1) và (2) ta có: \(\frac{ID}{IB}=\frac{ID}{IA}\cdot\frac{IA}{IB}=\frac{DA\cdot CD}{AB\cdot BC}\)

\(\Rightarrow\frac{ID+IB}{IB}=\frac{AB\cdot BC+DA\cdot CD}{AB\cdot BC}\) hay \(BD=\frac{AB\cdot BC+DA\cdot CD}{AB\cdot BC}\cdot IB\)

mặt khác  ta có: \(\frac{IC}{IA}=\frac{IC}{IB}:\frac{IA}{IB}=\frac{BC\cdot CD}{AB\cdot DA}\Rightarrow\frac{IC+IA}{IA}=\frac{AB\cdot DA+BC\cdot CD}{AB\cdot DA}\)

\(\Rightarrow AC=\frac{AB\cdot DA+BC\cdot CD}{AB\cdot DA}\cdot IA\)

Do đó: \(\frac{AC}{BD}=\left(\frac{AB\cdot DA+BC\cdot CD}{AB\cdot DA}\cdot IA\right):\left(\frac{AB\cdot BC+DA\cdot CB}{AB\cdot BC}\cdot IB\right)\Rightarrow\frac{AC}{BD}=\frac{AB\cdot DA+BC\cdot CD}{AB\cdot BC+DA\cdot CD}\)

Do đó:

\(\frac{AB\cdot DA+BC\cdot CD}{AB\cdot BC+DA\cdot CD}\left(max\right)\Leftrightarrow\hept{\begin{cases}AC\left(max\right)\\BD\left(min\right)\end{cases}}\)<=> AC qua O và BD _|_ OI

\(\frac{AB\cdot DA+BC\cdot CD}{AB\cdot BC+DA\cdot CD}\left(min\right)\Leftrightarrow\hept{\begin{cases}AC\left(min\right)\\BD\left(max\right)\end{cases}}\)<=> AC _|_OI vfa BD đi qua O

25 tháng 2 2017

B O A C D K H E

a, Xét tứ giác AKCH có: \(\widehat{AKC}+\widehat{AHC}=90+90=180\)=> tứ gác AKCH nội tiếp

b,Tứ giác AKCH nội tiếp => \(\widehat{HCK}=\widehat{HAD}\)(góc trong và góc ngoài đỉnh đối diện)

Mặt khác: \(\widehat{HAD}=\widehat{BCD}=\frac{1}{2}sđ\widebat{BD}\)

=> \(\widehat{BCD}=\widehat{ACD}\)=> CD là phân giác \(\widehat{KCB}\)

c,  Tứ giác AKCH nội tiếp: => \(\widehat{CKE}=\widehat{CAH}\)

Mà: \(\widehat{CDB}=\widehat{CAH}=\frac{1}{2}sđ\widebat{BC}\)

=> \(\widehat{CKE}=\widehat{CDE}\)=> tứ giác CKDE nội tiếp

=> \(\widehat{CKD}+\widehat{CED}=180\Rightarrow\widehat{CED}=180-\widehat{CKD}=180-90=90\)

=> \(CE⊥BD\)(ĐPCM)

d, em xem lại xem có gõ sai đề không nhé

16 tháng 8 2018

Câu d) Khi C di chuyển trên cung nhỏ̉ AB. Xác định vị trí C để CK.AD+CE.DB có giá trị lớn nhất. 

Nhờ mọi người giải dùm e với.