K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2018

c. 4 điểm A,D,E,F cùng nằm trên đt đường kính (I) (gt) => ADEF là tứ giác nội tiếp (Định nghĩa)

=> \(\widehat{EFS}=\widehat{ADE}\)(Cùng bù với \(\widehat{AFE}\))

Vì BDEC là tứ giác nội tiếp (cmt) => \(\widehat{ADE}=\widehat{ECB}\)(Cùng bù với \(\widehat{BDE}\)) => \(\widehat{EFS}=\widehat{ECB}\)=> Tứ giác CEFS là tứ giác nội tiếp (DHNB) => \(\widehat{ESF}=\widehat{ECF}=\widehat{ACF}\)(2 góc nội tiếp cùng chắn \(\widebat{EF}\))

Lại có: ABCF là tứ giác nội tiếp (4 đỉnh A,B,C,F cùng thuộc đt (O) (gt)) => \(\widehat{ACF}=\widehat{ABF}\)(2 góc nội tiếp cùng chắn \(\widebat{AF}\))

=> \(\widehat{ESF}=\widehat{ABF}\)(1)

Áp dụng hệ thức lượng trong \(\Delta ABH\)vuông tại H với đường cao HD ta có: \(AH^2=AD.AB\)

Xét đt (I) có: \(\widehat{AFH}=90^o\)(Góc nội tiếp chắn nửa đt) => \(HF\perp AS\)

Áp dụng hệ thức lượng trong \(\Delta ASH\)vuông tại H với đường cao HF ta có: \(AH^2=AF.AS\)

=> \(AD.AB=AF.AS\Leftrightarrow\frac{AD}{AF}=\frac{AS}{AB}\)

Xét \(\Delta ADS\)và \(\Delta AFB\)có:

\(\widehat{A}\)Chung

\(\frac{AD}{AF}=\frac{AS}{AB}\)(cmt)

=> \(\Delta ADS~\Delta AFB\left(C.G.C\right)\)

=> \(\widehat{ASD}=\widehat{ABF}\left(2\right)\)

Từ (1) và (2) => \(\widehat{ESF}=\widehat{ASD}\)hay \(\widehat{ESF}=\widehat{DSA}=\widehat{DSF}\)(Do \(\overline{A,F,S}\left(gt\right)\Rightarrow\widehat{DSA}=\widehat{DSF}\)) => 3 điểm S,D,E thẳng hàng (2 góc cùng số đo, có 1 cạnh chung, 2 cạnh còn lại của 2 góc cùng nằm về 1 phía so với cạnh chung thì 2 cạnh còn lại trùng nhau) => ĐPCM 

d.  Vì sđ\(\widebat{AB}=60^o\)(gt) => \(\widehat{AOB}=60^o\Rightarrow\Delta AOB\)đều => AB = OA = OB = R 

Áp dụng định lý pitago trong \(\Delta ABC\)vuông tại A có: \(AC=\sqrt{BC^2-AB^2}=\sqrt{(2R)^2-R^2}=R\sqrt{3}\)

=> \(S\Delta ABC=\frac{1}{2}AB.AC=\frac{1}{2}R.R\sqrt{3}=R^2\frac{\sqrt{3}}{2}\)

Mà \(S\Delta ABC=\frac{1}{2}AH.BC\Rightarrow AH=\frac{2.S\Delta ABC}{BC}=\frac{2.\frac{R^2\sqrt{3}}{2}}{2R}=\frac{R\sqrt{3}}{2}\)

Gọi \(R^'\)là bán kính đường tròn ngoại tiếp đt (I) => \(R^'=\frac{AH}{2}=\frac{R\sqrt{3}}{4}\)

Xét \(\Delta ADE\)và \(\Delta ACB\)có:

\(\widehat{A}\)chung

\(\widehat{ADE}=\widehat{ACB}\)(Cmt) 

=> \(\Delta ADE~\Delta ACB\left(g.g\right)\)=> \(\frac{S\Delta ADE}{S\Delta ACB}=\left(\frac{R^'}{R}\right)^2=\left(\frac{\frac{R\sqrt{3}}{4}}{R}\right)^2=\left(\frac{\sqrt{3}}{4}\right)^2=\frac{3}{16}\)

=> \(S\Delta ADE=\frac{3}{16}.S\Delta ACB=\frac{3}{16}.\frac{R^2\sqrt{3}}{2}=\frac{3R^2\sqrt{3}}{32}\)

Ta có: \(S_{BDEC}=S\Delta ABC-S\Delta ADE=\frac{R^2\sqrt{3}}{2}-\frac{3R^2\sqrt{3}}{32}=\frac{13R^2\sqrt{3}}{32}\)

10 tháng 6 2015

a, (O): góc BAC=90 độ (góc nt chắn nửa đường tròn).

(I): góc AEH=90(góc nt chắn nửa đường tròn). góc ADH=90(góc nt chắn nửa đường tròn) => tg AEHD là hcn(có 3 góc vuông)

b) (I): góc ADE=góc AHE( nt cùng chắn cung AE)

ta lại có:góc AHE=góc ABH( cùng phụ với góc BAH.) => ADE=ABH

=> tg BEDC nội tiếp (góc trong tại 1 đỉnh = góc ngoài tại đỉnh đối diện)

c, tg AEHD là hcn; AH cắt AD tại I => IA=IH=IE=ID

tam giác ADH: DI là trung tuyến

tam giác: AMH: MI là trung tuyến => D,M,I thẳng hàng. mà E,M,I thẳng hàng=> D,M,E thẳng hàng.

Nhớ L I K E nha

 

 

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái

8 tháng 3 2018
là câu a
8 tháng 3 2018

Ta có: ^BIC = 90o (do chắn đk BC) 
mà ^OMD = 90o (do DE _|_AB) 
=> tg BDMI nội tiếp 

23 tháng 12 2018

Mỉnh ko hiểu đề cho lắm. Tam giác ABC vuông tại A => AB vuông góc AC, vậy đề còn cho "Từ A vẽ đường vuông góc với AB và AC tại D và E" là sao??? Hơi vô lý.