K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1:

Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>AM vuông góc BC tại M

ΔCAB vuông tại A có AM là đường cao

nên CA^2=CM*CB

2:

D,M,B,E cùng thuộc (O)

=>DMBE nội tiếp

=>góc MDE+góc MBE=180 độ

=>góc CDM=góc CBE

Xét ΔCDM và ΔCBE có

góc CDM=góc CBE

góc DCM chung

Do đó: ΔCDM đồng dạng với ΔCBE

=>CD/CB=CM/CE

=>CD*CE=CM*CB

3: ΔOAK cân tại O

mà OH là đường cao

nên OH là phân giác của góc AOK

Xét ΔCAO và ΔCKO có

OA=OK

góc COA=góc KOC

OC chung

Do đó: ΔCAO=ΔCKO

=>góc CKO=90 độ

=>CK là tiếp tuyến của (O)

25 tháng 6 2021

bạn tham khảo ở đây nha,mình từng giải rồi

https://hoc24.vn/cau-hoi/cho-duong-tron-o-duong-kinh-ab-tren-tiep-tuyen-tai-a-cua-duong-trong-o-lay-diem-c-ve-tuyep-tuyen-cn-va-cat-tuyen-cde-tia-cd-nam-giua-2-tai-ca-co-de-thuoc-duong-tron-o-d-nam-giua-c-va-e.1081799079177

25 tháng 6 2021

thankkkkkkkkkkkkkkk

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
1 tháng 6 2016

Sorry nha!!!! Mình không biết

vì mình mới học lớp 4 thôi

21 tháng 6 2021

a) Vì CA là tiếp tuyến \(\Rightarrow\angle CAD=\angle CEA\) (góc tạo bởi tiếp tuyến và dây cung bằng góc nội tiếp chắn cung đó)

Xét \(\Delta CAD\) và \(\Delta CEA:\) Ta có: \(\left\{{}\begin{matrix}\angle CAD=\angle CEA\\\angle ACEchung\end{matrix}\right.\)

\(\Rightarrow\Delta CAD\sim\Delta CEA\left(g-g\right)\Rightarrow\dfrac{CA}{CE}=\dfrac{CD}{CA}\Rightarrow CA^2=CD.CE\)

mà \(CH.CO=CA^2\) (hệ thức lượng) \(\Rightarrow CD.CE=CH.CO\)

c) Vì AB là đường kính \(\Rightarrow\angle ADB=90\)

Vì CA,CN là tiếp tuyến \(\Rightarrow\Delta CAN\) cân tại C có CO là phân giác \(\angle ACN\)

\(\Rightarrow CO\bot AN\Rightarrow\angle AHM=90\)

\(\Rightarrow\angle AHM=\angle ADM=90\Rightarrow ADHM\) nội tiếp

Ta có: \(\angle EAF=\angle DAE-\angle DAF=180-\angle DBE-\angle CHD\) (ADHM,ADBE nội tiếp)

Ta có: \(CD.CE=CH.CO\Rightarrow\dfrac{CD}{CO}=\dfrac{CH}{CE}\)

Xét \(\Delta CHD\) và \(\Delta CEO:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{CD}{CO}=\dfrac{CH}{CE}\\\angle OCEchung\end{matrix}\right.\)

\(\Rightarrow\Delta CHD\sim\Delta CEO\left(c-g-c\right)\Rightarrow\angle CHD=\angle CEO\Rightarrow DHOE\) nội tiếp 

\(\Rightarrow\angle CHD=\angle CEO=\angle DEO=\dfrac{180-\angle DOE}{2}=90-\dfrac{1}{2}\angle DOE\)

\(=90-\angle DBE\Rightarrow\angle EAF=180-\angle DBE-\left(90-\angle DBE\right)=90\)

\(\Rightarrow EF\) là đường kính \(\Rightarrow E,O,F\) thẳng hàng

undefined

  

24 tháng 3 2022

Đoạn cuối bị ngộ nhận góc EBF = 90 độ rồi bạn ơi;-;

27 tháng 11 2017

a) Ta có 

C A B ⏜ = 90 0 O H C ⏜ = 90 0 ⇒ C A B ⏜ + O H C ⏜ = 180 0                            

Vậy tứ giác AOHC nội tiếp.                                                   

b) Ta có  C A D ⏜ = A E C ⏜ ,   A C E ⏜  chung suy ra  Δ A C D ~ Δ E C A  (g.g)

⇒ C A C E = A D A E ⇒ A C . A E = A D . C E

c) Từ E vẽ đường thẳng song song với MN cắt cạnh AB tại I và cắt cạnh BD tại F ⇒ H E I ⏜ = H C O ⏜ .

Vì tứ giác AOHC nội tiếp  ⇒ H A O ⏜ = H C O ⏜ = H E I ⏜ .

Suy ra tứ giác AHIE nội tiếp  ⇒ I H E ⏜ = I A E ⏜ = B D E ⏜ ⇒ H I / / B D .

Mà H là trung điểm của DE=> I là trung điểm của EF. Có EF//MN và IE= IF

=> O là trung điểm của đoạn thẳng MN.

Suy ra tứ giác AMBN là hình bình hành => AM//BN.