K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có 

OH là một phần đường kính

MN là dây

OH⊥MN tại H

Do đó: H là trung điểm của MN

=>HM=HN=MN/2=3(cm)

Xét ΔOHM vuông tại H có 

\(OM^2=OH^2+HM^2\)

hay OH=4cm

15 tháng 10 2021

Ta có: MN là đường kính \(\left(O;R\right)\)

\(\Rightarrow R=OM=\dfrac{1}{2}MN=\dfrac{1}{2}.6=3\left(cm\right)\)

 

15 tháng 10 2021

lên rank r à :v

Chọn C

10 tháng 10 2021

Vì AB là tiếp tuyến (O;OB) 

=> OB vuông AB 

hay tam giác ABO vuông tại B 

Xét tam giác OBA vuông tại B, đường cao BH 

* Áp dụng hệ thức : \(OB^2=OH.OA\Rightarrow OH=\dfrac{OB^2}{OA}=\dfrac{18}{5}\)cm 

a) Xét ΔOAB có OA=OB(=R)

nên ΔOAB cân tại O(Định nghĩa tam giác cân)

Ta có: ΔOAB cân tại O(cmt)

mà OC là đường cao ứng với cạnh đáy AB(OH⊥AB, C∈OH)

nên OC là đường phân giác ứng với cạnh AB(Định lí tam giác cân)

\(\widehat{AOC}=\widehat{BOC}\)

Xét ΔAOC và ΔBOC có

OA=OB(=R)

\(\widehat{AOC}=\widehat{BOC}\)(cmt)

OC chung

Do đó: ΔAOC=ΔBOC(c-g-c)

\(\widehat{OAC}=\widehat{OBC}\)(hai góc tương ứng)

mà \(\widehat{OAC}=90^0\)(CA là tiếp tuyến của (O) có A là tiếp điểm)

nên \(\widehat{OBC}=90^0\)

hay CB⊥OB tại B

Xét (O) có 

OB là bán kính

CB⊥OB tại B(cmt)

Do đó: CB là tiếp tuyến của (O)(Dấu hiệu nhận biết tiếp tuyến đường tròn)

b) Xét (O) có 

OH là một phần đường kính

AB là dây

OH⊥AB tại H(gt)

Do đó: H là trung điểm của AB(Định lí đường kính vuông góc với dây)

\(BH=\dfrac{AB}{2}=\dfrac{24}{2}=12cm\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔOBC vuông tại B có BH là đường cao ứng với cạnh huyền OC, ta được:

\(\dfrac{1}{BH^2}=\dfrac{1}{BC^2}+\dfrac{1}{BO^2}\)

\(\Leftrightarrow\dfrac{1}{12^2}=\dfrac{1}{BC^2}+\dfrac{1}{20^2}\)

\(\Leftrightarrow\dfrac{1}{BC^2}=\dfrac{1}{12^2}-\dfrac{1}{20^2}=\dfrac{1}{144}-\dfrac{1}{400}=\dfrac{1}{225}\)

\(\Leftrightarrow BC^2=225\)

hay BC=15(cm)

Áp dụng định lí Pytago vào ΔOBC vuông tại B, ta được:

\(OC^2=OB^2+BC^2\)

\(\Leftrightarrow OC^2=15^2+20^2=625\)

hay OC=25(cm)

Vậy: OC=25cm

a) Xét (O) có

\(\widehat{BAD}\) là góc nội tiếp chắn \(\stackrel\frown{BD}\)

\(\widehat{BCD}\) là góc nội tiếp chắn \(\stackrel\frown{BD}\)

Do đó: \(\widehat{BAD}=\widehat{BCD}\)(Hệ quả góc nội tiếp)

hay \(\widehat{IAD}=\widehat{ICB}\)

Xét ΔIAD và ΔICB có 

\(\widehat{IAD}=\widehat{ICB}\)(cmt)

\(\widehat{AID}=\widehat{CIB}\)(hai góc đối đỉnh)

Do đó: ΔIAD\(\sim\)ΔICB(g-g)

Suy ra: \(\dfrac{IA}{IC}=\dfrac{ID}{IB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(IA\cdot IB=IC\cdot ID\)(đpcm)

27 tháng 12 2019

a) Ta có AB và AC là tiếp tuyến tại A và B của (O)

=> AB⊥OB và AC⊥OC

Xét ΔAOB và ΔAOC có 

       OB=OC(=R)

Góc ABO=Góc ACO=90

       OA chung

=> ΔAOB=ΔAOC

=> AB=AC

=> A∈trung trực của BC

Có OB=OC(=R)

=>O∈trung trực của BC

=> OA là đường trung trực của BC 

Mà H là trung điểm của BC

=>A;H;O thẳng hàng

Xét ΔABO vuông tại B

=>A;B:O cùng thuộc đường tròn đường kính OA

Xét ΔACO vuông tại C

=>A;C;O cùng thuộc đuường tròn đường kính OA

=>A;B;C;O cùng thuộc đường tròn đường kính OA

b) Xét (O) có BD là đường kính

=>ΔBCD vuông tại C

=> CD⊥BC

Mà OA⊥BC

=>OA//CD

=> Góc AOC=Góc OCD

Xét ΔOCD có OC=OD

=> ΔOCD cân tại O

=> Góc OCD=Góc ODC

=> Góc ODC=Góc AOC

Xét ΔAOC và ΔCDK có 

Góc AOC=Góc CDK

Góc ACO=Góc CKD=90

=>ΔAOC∞ΔCDK

=>AOCDAOCD= ACCKACCK 

=>AC.CD=CK.OA

d) Xét ΔOCK vuông tại K

=> ΔOCK nội tiếp đường tròn đường kính OC

Xét ΔOHC vuông tại H

=> ΔOHC nội tiếp đường tròn đươngf kính OC

=> Tứ giác OKCH nội tiếp đường tròn đường kính OC

=> Góc CHK=Góc COD

Có góc BOA=Góc BCK( cùng phụ góc CBD)

Góc CHI+góc BCK=Góc BOA+ góc BAO

=>Góc CHI=Góc BAO

Mà Góc BAO=Góc CBD( cùng phụ góc ABC)

=> Góc CHI=Góc CBD

=> HI//BD

Xét ΔBCD có HI//BD và H là trung điểm của BC

=> HI là đường trung bình của ΔBCD

=> I là trung điểm của CK

29 tháng 4 2020

hay ghê