K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2018

đề đúng hết ko vậy bạn sao mjk vẽ hình ko đc

22 tháng 3 2018

Đúng rồi bạn

20 tháng 3 2020

M A C D O B N P Q E

Dễ thấy \(\Delta MCB~\Delta MDC\left(g.g\right)\Rightarrow\frac{MC}{MD}=\frac{BC}{CD}\)( 1 )

\(\Delta MAB~\Delta MDA\left(g.g\right)\Rightarrow\frac{MA}{MD}=\frac{AB}{AD}\)( 2 )

Lại có MA = MC . Từ ( 1 )  và ( 2 ) suy ra \(\frac{BC}{CD}=\frac{AB}{AD}\Rightarrow AD.BC=AB.CD\)

Áp dụng định lí Ploleme với tứ giác ABCD, ta có :

\(AB.CD+AD.BC=AC.BD\)

\(\Rightarrow BC.AD=AC.BD-AB.CD=\frac{1}{2}AC.BD\)

\(\Rightarrow\frac{AC}{AD}=\frac{2BC}{BD}\)( 3 )

\(\Delta NBE~\Delta NDB\left(g.g\right)\Rightarrow\frac{NB}{ND}=\frac{BE}{DB}\)\(\Delta NCE~\Delta NDC\left(g.g\right)\Rightarrow\frac{NC}{ND}=\frac{CE}{CD}\)

lại có :  NB = NC \(\Rightarrow\frac{BE}{BD}=\frac{CE}{CD}\Rightarrow BE.CD=CE.BD\)

Áp dụng định lí Ptoleme với tứ giác BECD, ta có : 

\(BE.CD+CE.BD=BC.DE\Rightarrow BE.CD=CE.BD=\frac{1}{2}BC.DE\)

\(\Delta PBC~\Delta PDB\left(g.g\right)\Rightarrow\frac{PC}{PB}=\frac{PB}{PD}\Rightarrow PC.PD=PB^2\)

Mà \(\frac{PC}{PB}=\frac{PB}{PD}=\frac{BC}{BD}\)

Mặt khác : \(\frac{PC}{PD}=\frac{PC.PD}{PD^2}=\left(\frac{PB}{PD}\right)^2=\left(\frac{BC}{BD}\right)^2\)( 4 )

suy ra : \(\frac{PC}{PD}=\left(\frac{BC}{BD}\right)^2=\left(\frac{2CE}{DE}\right)^2\)

giả sử AE cắt CD tại Q

\(\Rightarrow\Delta QEC~\Delta QDA\left(g.g\right)\Rightarrow\frac{QC}{QD}=\left(\frac{2CE}{DE}\right)^2\)

\(\Rightarrow\frac{QC}{QD}=\frac{PC}{PD}\Rightarrow P\equiv Q\)

Vậy 3 điểm A,E,P thẳng hàng

20 tháng 3 2020

v mình quên nối AE cắt CD. hay là nối 3 điểm A,E,P mà thôi, không sao.