Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có: \(\Lambda\)ABO=90 ( do AB là tiếp tuyến của (O))
\(\Lambda\)ACO=90 ( do AC là tiếp tuyến của (O))
\(\Rightarrow\) \(\Lambda\)ABO + \(\Lambda\)ACO = 90 + 90 = 180.
Suy ra: tứ giác ABOC nội tiếp.
b. Ta có: AB,AC lần lượt là tiếp tuyến của (O) nên AB=AC.
\(\Rightarrow\)\(\Delta\)ABC cân tại A lại có AH là tia phân giác nên AH cũng là đường cao
\(\Rightarrow\)AO\(\perp\)BC tại H.
Áp dụng đinh lý Py-ta-go vào \(\Delta\)ABO ta có:
AO2 = AB2 + BO2 = 42 + 32 = 25
\(\Rightarrow\)AO = 5 (cm).
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ABO ta được:
AB2 = AH.AO \(\Rightarrow\) AH = \(\dfrac{AB^2}{AO}\)=\(\dfrac{16}{5}\)(cm)
c. Ta có: \(\Lambda\)ACE=\(\Lambda\)ADC ( tính chất của góc tạo bởi tia tiếp tuyến và dây cung )
Xét \(\Delta\)ACE và \(\Delta\)ADC có:
\(\Lambda ACE=\Lambda ADC\)
\(\Lambda\)CAD chung
Do đó: \(\Delta ACE\sim\Delta ADC\) \(\Rightarrow\dfrac{AC}{AD}=\dfrac{AE}{AC}\) \(\Rightarrow\)AC2 = AD.AE (1)
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ACO có:
AC2 = AH.AO (2)
Từ (1) và (2) ,suy ra: AD.AE = AH.AO.
a)Ta có:\(\widehat{ABO};\widehat{ACO}\) lần lượt là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\widehat{ABO=}\widehat{ACO}=90^{ }\)
\(\Rightarrow\widehat{ABO}+\widehat{ACO}=90+90=180\)
Mà hai góc này đối nhau nên tứ giác ABOC nội tiếb)
b)Theo a) ta có:\(\widehat{ABO}=90\)⇒▲ABO là tam giác vuông tại B đường cao AH.
Áp dụng định lí pytago vào tam giác vuông ABO đường cao AH ta có:
\(AO^2=AB^2+BO^2=4^2+3^2=25\)
\(\Rightarrow\sqrt{AO}=5\) cm.
Áp dụng hệ thức lượng giữa cạnh và đường cao trong ▲vuông ABO ta có:
\(AB^2=AH\cdot AO\)
\(\Rightarrow AH=\dfrac{AB^2^{ }}{AO}=\dfrac{4^2^{ }}{5}=\dfrac{16}{5}\)
. . A B C D M H I
a) Xét (O) có OB \(\perp\) CD
=> H là trung điểm của CD
=> HC=HD
Xét tứ giác ODBC có: H là trung điểm của OB,CD
=> tứ giác ADBC là hình bình hành
Mà: OC=OD(gt)
=> tứ giác ADBC là hình thoi
b)Vì tứ giác ADBC là hình thoi
=> OC=BC
Mà OC=OB(=R)
=> OC=OB=BC
=> ΔOBC là tam giác đều
=> góc BOC =60
c) Có: OB=BC(cmt)
Mà: OB=BM
=> OB=BC=BM
Xét ΔOCM có CB là đường trung tuyến
Mà: BC=OB=BM(cmt)
=> ΔOCM vuông tại C
=> góc ACM=90
=> MC là tiếp tuyến của (O)
Xét ΔOCM vuông tại C nên:
\(OM^2=OC^2+CM^2\) ( theo đl pytago)
=> \(MC^2=OM^2-OC^2=4R^2-R^2=3R^2\)
=> \(MC=\sqrt{3}R\)
d) Vì ODBC là hình thoi (cmt)
=> OB là đường phân giác của góc COD
=> góc COH= góc DOH
Có: góc COH+ góc HOI =90
hay: góc DOH+ góc HOI = 90
Mà: góc HOI+ góc HIO =90
=> DOH = góc HIO
Xét ΔHOI và ΔHDO có:
góc OHI : góc chung
góc HIO = góc DOH(cmt)
=> ΔHOI ~ΔHDO
=> \(\frac{OH}{HD}=\frac{HI}{OH}\Rightarrow HI\cdot HD=OH^2\)
CHứng minh tương tự ta cũng có:
\(HB\cdot HM=HC^2\)
Xét ΔOCH vuông tại H
=> \(OH^2+HC^2=OC^2\)
Nên: \(HI\cdot HD+HB\cdot HM=OH^2+HC^2=OC^2=R^2\)
B C D H I M O
a ) Xét \(\left(O\right)\)có \(OB\perp CD\)
\(\Rightarrow H\)là trung điểm của CD
\(\Rightarrow HC=HD\)
Xét tứ giác \(ODBC\)có :
H là trung điểm của OB và CD
\(\Rightarrow\)tứ giác ADBC là hình thoi
b ) Vì tứ giác ADBC là hình thoi
\(\Rightarrow OC=BC\)
Mà \(OC=OB\left(=R\right)\)
\(\Rightarrow OC=OB=BC\)
\(\Rightarrow\Delta OBC\)là tam giác đều
\(\Rightarrow\widehat{BOC}=60^0\)
c ) Ta có : OB = BC (cmt)
Mà OB = BM
\(\Rightarrow OB=BC=BM\)
Xét \(\Delta OCM\)có :
CB là đường trung tuyến
Mà : \(BC=OB=BM\left(cmt\right)\)
\(\Rightarrow\Delta OCM\)vuông tại C nên :
\(OM^2=OC^2+CM^2\)( theo định lí Py - ta - go )
\(\Rightarrow MC^2=OM^2-OC^2=4R^2-R^2=3R^2\)
\(\Rightarrow MC=\sqrt{3}R\)
d ) Vì ODBC là hình thoi ( cmt )
\(\Rightarrow OB\)là đường phân giác của \(\widehat{COD}\)
\(\Rightarrow\widehat{COH}=\widehat{DOH}\)
Có : \(\widehat{COH}+\widehat{HOI}=90^0\)
Hay \(\widehat{DOH}+\widehat{HOI}=90^0\)
Mà \(\widehat{HOI}+\widehat{HIO}=90^0\)
\(\Rightarrow\widehat{DOH}=\widehat{HIO}\)
Xét \(\Delta HOI\)và \(HDO\)có :
\(\widehat{OHI}\): góc chung
\(\widehat{HIO}=\widehat{DOH}\left(cmt\right)\)
\(\Rightarrow\Delta HIO~\Delta HDO\)
\(\Rightarrow\frac{OH}{HD}=\frac{HI}{OH}\Rightarrow HI.HD=OH^2\)
Chứng minh tương tự ta cũng có :
\(HB.HM=HC^2\)
Xét \(\Delta OCH\)vuông tại H
\(\Rightarrow OH^2+HC^2=OC^2\)
Nên : \(HI.HD+HB.HM=OH^2+HC^2=OC^2=R^2\)
Chúc bạn học tốt !!!
a) Xét (O) có
OK là một phần đường kính(OK là bán kính của (O))
AB là dây(gt)
OK⊥AB tại H
Do đó: H là trung điểm của AB(Định lí đường kính vuông góc với dây)
Xét tứ giác OAKB có
H là trung điểm của đường chéo AB(cmt)
H là trung điểm của đường chéo OK(gt)
Do đó: OAKB là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành OAKB có OA=OB(=R)
nên OAKB là hình thoi(Dấu hiệu nhận biết hình thoi)
a. AB là tiếp tuyến của đt (O) tại B (gt) => \(\widehat{OBA}=90^o\)
AC là tiếp tuyến của đt (O) tại C (gt) => \(\widehat{OCA}=90^o\)
Xét tứ giác ABOC có: \(\widehat{OBA}+\widehat{OCA}=90^o+90^o=180^o\)=> Tứ giác ABOC nội tiếp đường tròn (Dhnb) => Đpcm
b.
Xét đt (O) có: \(\widehat{ABD}=\frac{1}{2}sđ\widebat{BD}\)(T/c góc tạo bởi tiếp tuyến và dây cung)
\(\widehat{BED}=\widehat{BEA}=\frac{1}{2}sđ\widebat{BD}\)(T/c góc nội tiếp của đt) (Do A,D,E (gt) => \(\widehat{BED}=\widehat{BEA}\))
=> \(\widehat{ABD}=\widehat{BEA}\)
Xét \(\Delta ABD\)và \(\Delta AEB\)có:
* \(\widehat{A}chung\)
* \(\widehat{ABD}=\widehat{BEA}\left(cmt\right)\)
=> \(\Delta ABD~\Delta AEB\left(g.g\right)\)=> \(\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AB^2=AD.AE\RightarrowĐpcm\)
c. Vì F là điểm đối xứng của D qua OA => OA là đường trung trực của DF (Đ/n đối xứng trục) => OD = OF = R (T/c điểm thuộc đường trung trực) => F \(\in\left(O\right)\)và \(\Delta ODF\)cân tại O (Đ/n) => OA vừa là đường trung trực của đoạn thẳng DF đồng thời là đường phân giác của \(\widehat{DOF}\)(T/c của \(\Delta\)cân)=> \(\widehat{DOA}=\widehat{FOA}=\frac{1}{2}\widehat{DOF}=\frac{1}{2}sđ\widebat{DF}\)
Xét đt (O) có: \(\widehat{DEF}=\frac{1}{2}sđ\widebat{DF}\)(T/c góc nội tiếp) => \(\widehat{DOA}=\widehat{DEF}\)(1)
Ta có: AB,AC lần lượt là 2 tiếp tuyến của đt (O) (B,C là 2 tiếp điểm) (gt) => OA là tia phân giác của \(\widehat{BOC}\)(Định lý về 2 tiếp tuyến cắt nhau)
Lại có: OB = OC = R => \(\Delta OBC\)cân tại O (Đ/n) => OA vừa là phân giác đồng thời là đường cao của \(\Delta OBC\)(T/c của \(\Delta\)cân)=> \(OA\perp BC\)tại H (H là giao điểm của OA và BC)
Áp dụng hệ thức lượng trong \(\Delta\)vuông ABO (vuông tại B) với đường cao BH ta được: \(AB^2=AH.AO\)
Mà \(AB^2=AD.AE\left(cmt\right)\)=> \(AD.AE=AH.AO\Leftrightarrow\frac{AD}{AO}=\frac{AH}{AE}\)
Xét \(\Delta AHD\)và \(\Delta AEO\)có:
* \(\widehat{A}\)chung
* \(\frac{AD}{AO}=\frac{AH}{AE}\left(cmt\right)\)
=> \(\Delta AHD~\Delta AEO\left(c.g.c\right)\)=> \(\widehat{AHD}=\widehat{AEO}=\widehat{DEO}\left(Do\overline{A,D,E}\Rightarrow\widehat{AEO}=\widehat{DEO}\right)\)=> Tứ giác DEOH là tứ giác nội tiếp (Dhnb) => \(\widehat{DEH}=\widehat{DOH}=\widehat{DOA}\)(2 góc nội tiếp cùng chắn \(\widebat{DH}\)) (Do A,H,O => \(\widehat{DOH}=\widehat{DOA}\)) (2)
Từ (1) và (2) => \(\widehat{DEF}=\widehat{DEH}\)=> 3 điểm E,F,H thẳng hàng ( 2 góc cùng số đo, có 1 cạnh chung, 2 cạnh còn lại của 2 góc cùng nằm về 1 phía so với cạnh chung thì 2 cạnh còn lại trùng nhau) => Đpcm.