K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2020

R A M B H Q C D S N P

a) Xét tam giác vuông ABR và ADQ có:

AB = AD (gt)

Góc BAR + góc BAP = 90 độ

Góc DAQ + góc BAP = 90 độ

=> Góc BAR = Góc DAQ

=> Tam giác vuông ABR = tam giác vuông ADQ (cạnh góc vuông – góc nhọn kề)

=> AR = AQ (2 cạnh tương ứng)

=> Tam giác AQR cân tại A.

CMTT ta có tam giác ADS = tam giác ABP

=> AS = AP => Tam giác APS cân tại A.

b) Tam giác AQR cân tại A => Trung tuyến AM đồng thời là đường cao.

=> AM vuông góc với QR => Góc AMH = 90 độ

Tương tự: Tam giác APS cân tại A => Trung tuyến AN đồng thời là đường cao.

=> AN vuông góc với SP => góc ANP = 90 độ hay góc ANH= 90 độ.

Tam giác AQR vuông cân tại A => Góc AQR = góc ARQ = 45 độ => Góc PQH = 45 độ.

Tam giác APS vuông cân tại A => góc ASP = góc APS = 45 độ => góc QPH = 45 độ (đối đỉnh).

Xét tam giác PHQ có: Góc PQH + góc QPH = 45 độ + 45 độ = 90 độ

=> Tam giác PHQ vuông cân tại H => PH vuông góc với PQ

=> góc NHM = 90 độ

Xét tứ giác AMHN có: Góc AMH = góc ANH = góc NHM = 90 độ

=> AMHN là hình chữ nhật (dhnb)

c) Xét tam giác SQR có:

BC vuông góc CD => RC vuông góc SQ => RC là đường cao.

AP vuông góc AR => QA vuông góc RS => QA là đường cao.

Mà RC cắt QA tại P

Vậy P là trực tâm tam giác SQR.

d) Tam giác ANP vuông tại A có trung tuyến AN => AN = SP/2

    Tam giác CSP vuông tại C có trung tuyến CN => CN = SP/2

=> AN = CN => N thuộc trung trực của AC.

CMTT ta có MA = MC => M thuộc trung trực của AC.

Vậy MN là trung trực của AC.

e) Ta có BA = BC (gt) => B thuộc trung trực của AC.

Mà MN là trung trực của AC (cmt) => B thuộc MN

Tương tự DA = DC (gt) => D thuộc trung trực của AC.

Mà MN là trung trực của AC (cmt) => D thuộc MN

Vậy M, B, N, D thẳng hàng.

2 tháng 12 2017

Cho hình vuông ABCD vẽ góc xAy = 90 độ,Ax cắt BC ở M,Ay cắt CD ở N,CM: tam giác MAN vuông cân,Vẽ hbh AMFN có O là giao điểm của AF và MN,CM: OA = OC = AF/2 và tam giác ACF vuông tại C,D O B thẳng hàng,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

p/s tham khao nha 

tk nha

2 tháng 12 2017

bạn giải thích giùm mình phần "Góc ANM = góc ACM = 45 độ" được không ạ ?

6 tháng 9 2016

 a,Chứng minh tam giác MPE đồng dạng với tam giác KPQ. 
+PK là phân giác góc QPO. 
=>^MPE = ^KPQ.(α) . 
+ Tam giác OMN đều .=>^EMP=120 độ. 
+ QK cũng là phân giác ^OQP. 
=>^QKP = 180 - (^KQP+^KPQ). 
Mà 2^KQP + 2^KPQ =180- 60 =120 độ. 
=>^QKP=120 độ. Do đó:^EMP = ^QKP. (ß) . 
Từ (α) và (ß), ta có tam giác MPE đồng dạng với tam giác KPQ. 
b, Chứng minh tứ giác PQEF nội tiếp được trong đường tròn. 
Do hai tam giác MPE và KPQ đồng dạng nên:^MEP=^KQP , hay: ^FEP=^FQP. 
Suy ra, tứ giác PQEF nội tiếp được trong đường tròn. 
c, Gọi D là trung điểm của đoạn PQ. Chứng minh tam giác DEF là một tam giác đều. 
Do hai tam giác MPE và KPQ đồng dạng nên: PM/PK =PE/PQ . Suy ra: PM/PE =PK/PQ . 
Ngoài ra: ^MPK=^EPQ . Do đó, hai tam giác MPK và EPQ đồng dạng. 
Từ đó:^PEQ=^PMK=90độ . 
Suy ra, D là tâm của đường tròn ngoại tiếp tứ giác PQEF. 
Vì vậy, tam giác DEF cân tại D. 
Ta có: ^FDP=2^FQD=^OQP ; ^EDQ=2^EPD=^OPQ . 
^FDE=180 - (^FDP+^EDQ) =^POQ =60độ. 
Từ đó, tam giác DEF là tam giác đều.

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0