Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d, Vi ED la tiep tuyen (chung minh tren) => tam giac EDF vuong tai D
co \(\widehat{CDE}=\frac{1}{2}sd\widebat{DC}=\frac{1}{2}\widehat{COD}=\frac{1}{2}.120=60^o\)
ma \(\widehat{CED}+\widehat{COD}=180^o\Rightarrow\widehat{CED}=180-120=60^o\)
suy ra \(\Delta CED\) deu => EC=CD (1)
mat khac cung co \(\widehat{CFD}=\widehat{CDF}\) (phu hai goc bang nhau)
=> tam giac CDF can tai C
suy ra CD=CF (2)
tu (1),(2) suy ra dpcm
Bài 1:
a,
OM là đường trung bình của tam giác BAC => OM = 1/2*BC
OM = 1/2*AB
=> AB=BC (đpcm).
b,
Tam giác ABC đều => BC = 2*r(O)
MN là đường trung bình của tam giác ABC => MN = 1/2*AB = r(O) = OM = OB =BN => BOMN là hình thoi.
a: Xét (O) có
ΔABC nội tiếp
AB là đường kính
Do đó: ΔABC vuông tại C
Xét ΔACB vuông tại C có
\(\sin\widehat{CBA}=\dfrac{CA}{AB}=\dfrac{1}{2}\)
=>CA=R
hay \(CB=R\sqrt{3}\)
b: Xét ΔMAB vuông tại A có AC là đường cao
nên \(BC\cdot MC=AC^2\left(1\right)\)
Xét ΔACB vuông tại C có CH là đường cao
nên \(AH\cdot AB=AC^2\left(2\right)\)
Từ (1) và (2) suy ra \(MC\cdot BC=AH\cdot AB\)
N A B H M C O K I
1) Xét tứ giác CIOH có \(\widehat{CIO}+\widehat{CHO}=180^o\)nên là tứ giác nội tiếp
suy ra 4 điểm C,H,O,I cùng thuộc 1 đường tròn
2) vì OI \(\perp\)AC nên OI là đường trung trực của AC
\(\Rightarrow\widehat{AOM}=\widehat{COM}\)
Xét \(\Delta AOM\)và \(\Delta COM\)có :
\(\widehat{AOM}=\widehat{COM}\)( cmt )
OM ( chung )
OA = OC
\(\Rightarrow\Delta AOM=\Delta COM\left(c.g.c\right)\)
\(\Rightarrow\widehat{OAM}=\widehat{OCM}=90^o\)
\(\Rightarrow OC\perp MC\)hay MC là tiếp tuyến của đường tròn O
3) Ta có : \(\hept{\begin{cases}\widehat{AOM}+\widehat{IAO}=90^o\\\widehat{IAO}+\widehat{HBC}=90^o\end{cases}}\Rightarrow\widehat{AOM}=\widehat{HBC}\)
Xét \(\Delta AOM\)và \(\Delta HCB\)có :
\(\widehat{AOM}=\widehat{HBC}\); \(\widehat{MAO}=\widehat{CHB}=90^o\)
\(\Rightarrow\Delta AOM~\Delta HBC\left(g.g\right)\)
4) Gọi N là giao điểm của BC và AM
Xét \(\Delta NAB\)có AO = OB ; OM // BN nên AM = MN
CH // AN \(\Rightarrow\frac{CK}{NM}=\frac{KH}{AM}\left(=\frac{BK}{BM}\right)\)
Mà AM = NM nên CK = KH
\(\Rightarrow\)K là trung điểm của CH
a: Xét (O) có
ΔABC nội tiếp
AB là đường kính
Do đó: ΔABC vuông tại C
b: Xét ΔABC vuông tại C có CH là đường cao
nên \(AH\cdot AB=AC^2\left(1\right)\)
Xét ΔMAB vuông tại A có AC là đường cao
nên \(MC\cdot BC=AC^2\left(2\right)\)
Từ (1) và (2) suy ra \(AH\cdot AB=MC\cdot BC\)