K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Qua O kẻ đường thẳng vuông góc AB và CD, lần lượt cắt AB và CD tại E và F ⇒ E là trung điểm AB, F là trung điểm CD

AE=12AB=4(cm) ; CF=12CD=3(cm)

Áp dụng định lý pytago cho tam giác vuông OAE

OE=√OA2−AE2=√R2−AE2=3(cm)

Pitago tam giác vuông OCF:

OF=√OC2−CF2=√R2−CF2=4(cm)

⇒EF=OE+OF=7(cm)

chúc bn học tốt !

14 tháng 5 2023

a) Ta có AH là đường cao của tam giác ABC, do đó AB là đường trung trực của đoạn thẳng LH (vì H là trung điểm của BC).

b) Ta có $\angle AED = \angle ACD$ do cùng chắn cung AD trên đường tròn (T). Mà $\angle A = \angle APQ$ vì DE // PQ, nên $\angle AED = \angle APQ$. Tương tự, ta cũng có $\angle ADE = \angle AQP$. Do đó tam giác ADE và APQ đều có hai góc bằng nhau, tức là cân.

c) Ta có $\angle LBD = \angle LCB$ do cùng chắn cung LB trên đường tròn (T). Mà $\angle LCB = \angle LPB$ vì DE // PQ, nên $\angle LBD = \angle LPB$. Tương tự, ta cũng có $\angle LDC = \angle LQC$. Do đó tam giác LBD và LPQ đều có hai góc bằng nhau, tức là đồng dạng. Vậy ta có $\frac{LD}{LP} = \frac{LB}{LQ}$.

Từ đó, có $\frac{LP}{LQ} = \frac{LB}{LD}$. Áp dụng định lý cosin trong tam giác BPQ, ta có:

$PQ^2 = BP^2 + BQ^2 - 2BP \cdot BQ \cdot \cos{\angle PBQ}$

Nhưng ta cũng có:

$BP = LB \cdot \frac{LD}{LP}$

$BQ = L \cdot \frac{LP}{LD}$

Thay vào định lý cosin, ta được:

$PQ^2 = LB^2 + LQ^2 - 2LB \cdot LQ \cdot \frac{LD}{LP} \cdot \frac{LP}{LD} \cdot \cos{\angle PBQ}$

$PQ^2 = LB^2 + LQ^2 - 2LB \cdot LQ \cdot \cos{\angle PBQ}$

Tương tự, áp dụng định lý cosin trong tam giác ADE, ta có:

$DE^2 = AD^2 + AE^2 - 2AD \cdot AE \cdot \cos{\angle AED}$

Nhưng ta cũng có:

$AD = LD \cdot \frac{LB}{LP}$

$AE = LQ \cdot \frac{LD}{LP}$

Thay vào định lý cosin, ta được:

$DE^2 = LD^2 + LQ^2 - 2LD \cdot LQ \cdot \frac{LB}{LP} \cdot \frac{LD}{LP} \cdot \cos{\angle AED}$

$DE^2 = LD^2 + LQ^2 - 2LD \cdot LQ \cdot \cos{\angle AED}$

Nhưng ta cũng có $\angle AED = \angle PBQ$ do tam giác cân ADE và APQ, nên $\cos{\angle AED} = \cos{\angle PBQ}$. Do đó,

$DE^2 + PQ^2 = 2(LB^2 + LQ^2) - 4LB \cdot LQ \cdot \cos{\angle PBQ}$

Nhưng ta cũng có $LB \cdot LQ = LH \cdot LL'$ (với L' là điểm đối xứng của L qua AB), do tam giác HL'B cân tại L'. Thay vào phương trình trên, ta được:

$DE^2 + PQ^2 = 2(LB^2 + LQ^2) - 4LH \cdot LL' \cdot \cos{\angle PBQ}$

14 tháng 7 2015

Trên BC lấy I sao cho IC=IB

Ta có AM=MC=AC/2=20/2= 10 cm

Từ M kẻ MH vuông góc AB. Theo gt, ta được MH=8 cm

Áp dụng Pytago trong tam giác vuông AMH: AH2= AM- MH2 = 10- 82= 36 ----> AH=6 cm

có AM=MC ; IB=IC ---> MI=1/2AB=1/2 .24 =12 cm( đường TB)

Từ I kẻ IK vuông góc AB

có MI// AB( MI là đường trung bình) ; IK//MK (cùng vuông góc AB) 

---> MIKH là hình bình hành

---> MI=HK=12 cm; MH=IK=8 cm

BK= AB-AH-HK = 24-6-12=6 cm

Xét tam giác AMH và tam giác BIK:

     AH=BK=6 

     góc AHM= góc BKI= 90O

      MH=IK=8

----> tam giác AMH=tam giác BIK(c.g.c)

----> góc MAH= góc IBK (cặp góc tương ứng) hay góc CAB= góc CBA

----> tam giác ABC cân tại C

b) có AM=MC=AC/2=10 cm ; IB=IC= BC/2 ; mà AC=BC (tam giáccân)

----> AM=MC=IB=IC=10 cm

Kéo dài CO cắt AB tại D

tam giác AOC có OA=OC (bán kính) --> tam giác AOC cân tại O

có OM là trung tuyến ---> OM vuông góc AC hay góc OMC=90o

Tương tự với tam giác OCB được  OI vuông góc BC hay góc OIC=90o

Xét tam giác vuông OMC và tam giác vuông OIC:

     MC=IC=10cm

    OC cạnh chung

--->tam giác OMC = tam giác OIC (ch.cgv)

--> góc MCO= góc ICO ---> CO hay CD là phân giác góc ACB của tam giác cân ABC --->

  • CD vuông góc AB hay góc ADC=90o
  • AD=BD=AB/2 = 12 cm

Theo Pytago trong tam giác ACD: CD2= AC2-AD2 = 202-122 =256  ---> CD=16 cm

Đặt OC=OA=X --> OD= CD-OC = 16 - X

Theo Pytago tam giác AOD: AO2= OD2+AD2

                                                     <-->X2= (16-X)2 + 122

                                                     <--> 162 -32X + X2 +122 - X2=0

                                       <--> 400 - 32X=0

                                       <--> X= -400/-32= 12,5 cm

 Vậy bán kính đường tròn bằng 12,5 cm

     

 

     

    

4 tháng 9 2017

tại sao bạn không kẻ đường cao CD. Như thế sẽ đỡ mất thời gian chứng minh

30 tháng 4 2020

A B C O I M

1.Vì đường kính của (O) là 10cm

\(\Rightarrow\) Bán kính của (O) là  \(R=\frac{10}{2}=5\)

\(\Rightarrow d\left(O,d\right)=3< R=5\)

\(\Rightarrow d\left(O\right)\)cắt nhau tại 2 điểm phân biệt

2 . Kẻ \(OI\perp AB\Rightarrow I\) là trung điểm AB

Vì \(OI\perp AB\Rightarrow OI=3\Rightarrow AI^2=OA^2-0I^2=5^2-3^2=16\)

\(\Rightarrow AI=4\Rightarrow AB=2AI=8\) vì I là trung điểm AB

3.Vì O, I là trung điểm AC,AB

=> OI là đường trung bình \(\Delta ABC\Rightarrow BC=2OI=6\)

4 . Vì AC là đường kính của (O) 

\(\Rightarrow CB\perp AB\Rightarrow CB\perp AM\)

Mà \(CA\perp CM\Rightarrow CB^2=AB.BM\)

\(\Rightarrow BM=\frac{BC^2}{AB}=\frac{6^2}{8}=\frac{9}{2}\)

 
Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MFBài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.Bài 3....
Đọc tiếp

Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MF

Bài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.

Bài 3. Cho đường tròn (O), hai dây AB và AC vuông góc với nhau có độ dài theo thứ tự bằng 10cm và 24cm. a) Tính khoảng cách từ tâm đến mỗi dây b) chứng minh rằng ba điểm B, O, C thẳng hàng.

Bài 4. Cho đường tròn (O), hai dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Trên tia đối của tia AB lấy điểm E sao cho AE = BM. Trên tia đối của tia CD lấy điểm F sao cho CF = DM. Chứng minh rằng OE = OF.

Bài 5. Cho đường tròn (O), hai dây AB và CD có AB > CD, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. So sánh các độ dài MH và MK. 

giải giúp mình vs ạ . tạo mình đang cần gấp . cảm ơn nha

 

0