K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho nửa đường tròn (O) đường kính AB. Lấy điểm C trên đoạn AO, C khác A và O. Đường thẳng đi qua C vuông góc với AO cắt nửa đường tròn (O) tại D. M là điểm bất kì trên cung BD ( M khác B và D). Tiếp tuyến tại M của (O) cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.a/ CM bốn điểm B,C,F,M cùng nằm trên một đường tròn.b/ CM: EM = EFc/ Gọi I là tâm đường tròn ngoại tiếp...
Đọc tiếp

Bài 1: Cho nửa đường tròn (O) đường kính AB. Lấy điểm C trên đoạn AO, C khác A và O. Đường thẳng đi qua C vuông góc với AO cắt nửa đường tròn (O) tại D. M là điểm bất kì trên cung BD ( M khác B và D). Tiếp tuyến tại M của (O) cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD.

a/ CM bốn điểm B,C,F,M cùng nằm trên một đường tròn.

b/ CM: EM = EF

c/ Gọi I là tâm đường tròn ngoại tiếp tam giác DMF. CM góc ABI có số đo không đổi khi M di động trên cung \(\widebat{BD}\)

Bài 2: Cho tam giác đều ABC nội tiếp trong đường tròn (O). Một đường thẳng d thay đổi đi qua A, cắt (O) tại điểm thứ hai là E, cắt hai tiêp tuyến kẻ từ B và C của đường tròn (O) lần lượt tại M và N sao cho A,M,N nằm ở cùng nửa mặt phẳng bờ BC. Gọi giao điểm của hai đường thẳng MC và BN tại F. CMR:

a/ Hai tam giác MBA và CAN dồng dạng và tích MB.CN không đổi.

b/ Tứ giác BMEF nội tiếp trong một đường tròn.

c/ Đường thẳng EF luôn đi qua một điểm cố định khi (d) thay đổi.

0
6 tháng 2 2018

a) Gọi I, K lần lượt là trung điểm của AE và BC.

Ta có : \(EB^2=\left(BK-EK\right)^2;EC^2=\left(KC+EK\right)^2\)

\(\Rightarrow EB^2+EC^2=2\left(BK^2+EK^2\right)=2\left(BO^2-OK^2+OE^2-OK^2\right)\)

\(=2\left(R^2+r^2\right)-4OK^2\)

\(AE^2=4AI^2=4\left(r^2-OI^2\right)\)

\(\Rightarrow EB^2+EC^2+EA^2=2R^2+6r^2-4\left(OI^2+OK^2\right)\)

Mà OIEK là hình chữ nhật nên \(OI^2+OK^2=OE^2=r^2\)

\(\Rightarrow EB^2+EC^2+EA^2=2R^2+2r^2\) không đổi.

b) Giả sử EO giao với AK tại J.

Vì IOEK là hình chữ nhật nên OK song song và bằng EI. Vậy nên OK song song và bằng một nửa AE.

Do đó \(\frac{JE}{JO}=\frac{AJ}{JK}=\frac{AE}{OK}=2\)

Vì OE cố định nên J cố định; Vì AK là trung tuyến của tam giác ABC nên J là trọng tâm tam giác ABC

Suy ra J thuộc MC.

Vậy MC đi qua J cố định.

c) Vì AK = 3/2AJ nên H trùng K.

Do đó OH vuông góc BC. Suy ra H thuộc đường tròn đường kính OE.

4 tháng 3 2018

cảm ơn bạn nhiều

16 tháng 3 2018

Hẳn lớp 9

30 tháng 3 2018

a)

Từ M kẻ tiếp tuyến Mx của (O) nên OA vuông góc với Mx

Ta có tứ giác MEHF là tứ giác nội tiếp => góc MFE=góc MHE(1)

Mà góc MHE=góc MAH(2) (+góc HMA=90o)

Từ (1) và (2) => góc MAB = góc MFE

Mặt khác góc MAB=góc BMx (=1/2 số đo cung MB )

=>EF song song với Mx

Om vuông góc Mx => OM vuông góc  È 

mà MD vuông góc È => o thuộc MD => dpcm

17 tháng 4 2018

làm câu b đi bạn