Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác MNC nội tiếp trong đường tròn (O) có NC là đường kính nên góc (CMN) = 90 °
Suy ra: NM ⊥ MC
Mà OA ⊥ MN (chứng minh trên)
Suy ra: OA // MC
a) Xét (O) có
AM là tiếp tuyến có M là tiếp điểm(gt)
AN là tiếp tuyến có N là tiếp điểm(gt)
Do đó: AM=AN; OM=ON(Tính chất hai tiếp tuyến cắt nhau)
Ta có: AM=AN(cmt)
nên A nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: OM=ON(cmt)
nên O nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AO là đường trung trực của MN
hay AO⊥MN(đpcm)
b) Xét (O) có
ΔMNC nội tiếp đường tròn(C,M,N∈(O))
NC là đường kính
Do đó: ΔMNC vuông tại M(Định lí)
⇒MN⊥MC
Ta có: MN⊥MC(cmt)
MN⊥AO(cmt)
Do đó: MC//AO(Định lí 1 từ vuông góc tới song song)
c) Áp dụng định lí Pytago vào ΔOMA vuông tại M, ta được:
\(OA^2=OM^2+MA^2\)
\(\Leftrightarrow AM^2=OA^2-OM^2=5^2-3^2=16\)
hay \(AM=\sqrt{16}=4cm\)
mà AM=AN(cmt)
nên AN=4cm
Gọi H là giao điểm của MN và AO
mà MN⊥AO tại trung điểm của MN
nên H là trung điểm của MN và MH⊥AO tại H
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAMO vuông tại M, ta được:
\(MH\cdot AO=MO\cdot MA\)
\(\Leftrightarrow MH\cdot5=4\cdot3=12\)
hay MH=2,4cm
mà \(MN=2\cdot MH\)(H là trung điểm chung của MN)
nên \(MN=2\cdot2.4=4.8cm\)
Chu vi tam giác AMN là:
\(C=AM+AN+MN=5+5+4.8=14.8cm\)
a) ta có : AN = AM (tính chất tiếp tuyến)
\(\Rightarrow\) tam giác AMN cân tại A
OA là tia phân giác cũng là đường cao
\(\Rightarrow\) OA \(\perp\) MN (đpcm)
b) đặc H là giao điểm của MN và AO
ta có MH = HN (OA \(\perp\) MN \(\Rightarrow\) H là trung điểm MN)
mà CO = CN = R
\(\Rightarrow\) OH là đường trung bình của tam giác MNC
\(\Rightarrow\) OH // MC \(\Leftrightarrow\) MC // OA (đpcm)
Ta có: AM = AN (tính chất hai tiếp tuyến cắt nhau)
Suy ra tam giác AMN cân tại A
Mặt khác AO là đường phân giác của góc MAN (tính chất hai tiếp tuyến cắt nhau)
Suy ra AO là đường cao của tam giác AMN (tính chất tam giác cân)
Vậy OA ⊥ MN.
Cho sửa lại đề tí ==* , câu b) là c/m MR // AO => MC // AO :>
O N C A M H
a. Ta có: AM = AN (tính chất hai tiếp tuyến cắt nhau)
Suy ra tam giác AMN cân tại A
Mặt khác AO là đường phân giác của góc MAN ( tính chất hai tiếp tuyến cắt nhau )
Suy ra AO là đường cao của tam giác AMN ( tính chất tam giác cân )
Vậy \(OA\perp MN\)
b. Tam giác MNC nội tiếp trong đường tròn (O) có NC là đường kính nên góc (CMN) = 90o
Suy ra: \(NM\perp MC\)
Mà \(OA\perp MN\)(chứng minh trên)
Suy ra: OA // MC
c. Ta có: \(AN\perp NC\) (tính chất tiếp tuyến)
Áp dụng định lí Pitago vào tam giác vuông AON ta có :
AO2 = AN2 + ON2
Suy ra : AN2 = AO2 – ON2 = 52 – 32 = 16
AN = 4 (cm)
Suy ra: AM = AN = 4 (cm)
Gọi H là giao điểm của AO và MN
Ta có: \(MH=NH=\frac{MN}{2}\) (tính chất tam giác cân)
Tam giác AON vuông tại N có \(NH\perp AO\). Theo hệ thức lượng trong tam giác vuông, ta có:
OA . NH = AN . ON => \(NH=\frac{\left(AN.ON\right)}{AO}=\frac{\left(4.3\right)}{5}=2,4\)
MN = 2.NH = 2.2,4 = 4,8 (cm)
Vậy .....................
a, Vì AM; AN lần lượt là tiếp tuyến đường tròn (O) với M;N là tiếp điểm
=> ^AMO = ^ANO = 900
mà AM = AN (tc tiếp tuyến cắt nhau) ; OM = ON = R
Vậy OA là đường trung trực đoạn MN => OA vuông MN
Xét tứ giác AMON có
^AMO + ^ANO = 1800
mà 2 góc này đối Vậy tứ giác AMON là tứ giác nt 1 đường tròn
b, Xét tam giác AMB và tam giác ACM có
^A _ chung ; ^AMB = ^ACB ( cùng chắn cung BM )
Vậy tam giác AMB ~ tam giác ACM (g.g)
\(\dfrac{AM}{AC}=\dfrac{AB}{AM}\Rightarrow AM^2=AB.AC\)
c, Xét tam giác OMA vuông tại M, đường cao MH
Ta có \(AM^2=AH.AO\)( hệ thức lượng )
=> \(AB.AC=AH.AO\Rightarrow\dfrac{AB}{AO}=\dfrac{AH}{AC}\)
Xét tam giác ABH và tam giác AOC có
^A _ chung
\(\dfrac{AB}{AO}=\dfrac{AH}{AC}\left(cmt\right)\)
Vậy tam giác ABH ~ tam giác AOC (c.g.c)
=> ^ABH = ^AOC ( góc ngoài đỉnh B )
Vậy tứ giác BHOC là tứ giác nt 1 đường tròn
d, Ta có BHOC nt 1 đường tròn (cmc)
=> ^OHC = ^OBC (góc nt chắc cung CO)
=> ^AHB = ^ACO (góc ngoài đỉnh H)
mà ^OCB = ^OBC do OB = OC = R nên tam giác OBC cân tại O
=> ^OHC = ^AHB
mà ^CHN = 900 - ^OHC
^NHB = 900 - ^AHB
=> ^CHN = ^NHB
=> HN là phân giác của ^BHC
a, Ta có AM ; AN lần lượt là tiếp tuyến (O)
=> ^AMO = ^ANO = 900
Xét tứ giác AMON có ^AMO + ^ANO = 1800
mà 2 góc này đối
Vậy tứ giác AMON là tứ giác nt 1 đường tròn
b, Xét tam giác AMB và tam giác ACM ta có
^A _ chung ; ^AMB = ^ACM ( cùng chắn BM )
Vậy tam giác AMB ~ tam giác ACM (g.g)
c, Ta có AM = AN ( tc tiếp tuyến cắt nhau )
ON = OM = R => OA là đường trung trực đoạn MN
Xét tam giác AMO vuông tại M, đường cao MH
=> AM^2 = AH.AO
=> AB . AC = AH . AO => AB/AO = AH/AC
Xét tam giác ABH và tam giác AOC có
^A _ chung ; AB/AO = AH/AC (cmt)
Vậy tam giác ABH ~ tam giác AOC (c.g.c)
=> ^ABH = ^AOC ( mà ^ABH là góc ngoài đỉnh B )
Vậy tứ giác BHOC là tứ giác nt 1 đường tròn