Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔOAB cân tại O
mà OC là đường cao
nên OC là phân giác của góc AOB
Xét ΔAOC và ΔBOC có
OA=OB
góc AOC=góc BOC
OC chung
Do đó: ΔAOC=ΔBOC
=>góc OBC=90 độ và CA=CB
mà OA=OB
nên OC là trung trực của AB
=>M nằm trên trung trực của AB
=>sđ cung MA=sđ cung MB
=>góc ABM=góc CBM
=>BM là phân giác của góc CBA
b) MN = AN = 1/2 AC (đường trung tuyến ứng với cạnh huyền trong tam giác AMC vuông tại M)
tam giác AON = tam giác MON (c.c.c)
=> góc OMN = 90đ hay OM vuông góc NM => NM là tiếp tuyến
c) có NM Là tiếp tuyến (câu b)
=> góc O1= góc O2 , góc O3 = góc O4 (t/c hai tiếp tuyến cắt nhau)
có O1+O2+O3+O4 = 180đ
=> O2+O3 = 90đ
=> tam giác NOD vuông tại O
Xét tam giác vuông NOD, đường cao OM
=> tam giác OMN đồng dạng với tam giác DMO
=> \(\frac{NM}{OM}=\frac{OM}{MD}\)
=>\(\frac{AN}{OM}=\frac{OM}{DB}\)
=> AN.BD=\(R^2\)
d) có AN.BD=\(R^2\)
=> 2AN . BD = 2 R.R
=>AC.BD = AB . OA
=>\(\frac{AC}{AB}=\frac{OA}{BD}\)
=> tam giác AOC đồng dạng với tam giác BDA
=>góc AOC = góc ADB
Gọi K là giao điểm của AD và OC
=> tam giác AOK đồng dạng ADB (g.g)
=>góc OKA = góc DBA = 90đ
=> \(AD\perp OC\)
Bài 1:
a,
OM là đường trung bình của tam giác BAC => OM = 1/2*BC
OM = 1/2*AB
=> AB=BC (đpcm).
b,
Tam giác ABC đều => BC = 2*r(O)
MN là đường trung bình của tam giác ABC => MN = 1/2*AB = r(O) = OM = OB =BN => BOMN là hình thoi.
a: Xét ΔOAC và ΔOBC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔOAC=ΔOBC
Suy ra: \(\widehat{OAC}=\widehat{OBC}=90^0\)
hay BC là tiếp tuyến của (O)
b: Xét (O) có
ΔABD nội tiếp
BD là đường kính
Do đó: ΔABD vuông tại A
Suy ra: BA⊥AD
mà AB⊥OC
nên AD//OC
câu c sao b, mik cx giải đc mỗi câu a vs b