K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2019

A B C D M N O I K P Q H S R L T E G

1) Do DN // AB nên ^DNC = ^BAC (Đồng vị). Mà ^BAC = ^DBC nên ^DNC = ^DBC => Tứ giác BNCD nội tiếp

Suy ra 5 điểm B,O,N,C,D cùng thuộc 1 đường tròn  => ^BND = ^BOD = ^COD = ^CND

Ta có: DN // AB => ^BND = ^ABN. ^CND = ^NAB => ^NBA = ^NAB => \(\Delta\)ANB cân tại N (đpcm).

2) Ta có: ^DCM = ^DNB = ^DNC => \(\Delta\)DMC ~ \(\Delta\)DCN => DC2 = DM.DN. Dễ thấy: DC2 = DI.DA

Suy ra: DM.DN = DI.DA => Tứ giác AIMN nội tiếp => ^IMK = ^IAN = ^IBC => \(\Delta\)MIK ~ \(\Delta\)MKB (g.g)

=> KM2 = KI.KB. Ta lại có: ^KDI = ^IAB = ^KBD => \(\Delta\)IKD ~ \(\Delta\)DKB (g.g) => KD2 = KI.KB

Từ đó: KM2 = KD2 => KM = KD = DM/2. Do G là trung điểm KD nên \(\frac{GM}{GK}=3\) (1)

Gọi giao điểm của tia AD và tia ND là R. Theo hệ quả ĐL Thales: \(\frac{QB}{QM}=\frac{AB}{MR}\) (2)

Nếu ta gọi giao của PI với BC là V, theo phép vị tự thì I là trung điểm của PV. Từ đó suy ra: GM=GR

Mà GD = GK = GM/3 nên DK = MR/3. Lại áp dụng hệ quả ĐL Thales:  \(\frac{IK}{IB}=\frac{DK}{AB}=\frac{MR}{3AB}\) (3)

Từ (1),(2),(3) suy ra: \(\frac{GM}{GK}.\frac{QB}{QM}.\frac{IK}{IB}=3.\frac{AB}{MR}.\frac{MR}{3AB}=1\). Theo đk đủ của ĐL Mélelaus thì 3 điểm Q,I,G tương ứng nằm trên các cạnh BM,BK,KM của \(\Delta\)BKM thẳng hàng (đpcm).

3) Gọi (HCS) cắt (O) tại điểm thứ hai là T. E là giao điểm của OD và BC.

Ta thấy: ^TBD = ^TCB = ^THS = ^THD (Góc tạo bởi tiếp tuyến và dây + Góc nội tiếp) => Tứ giác BHTD nội tiếp

Từ đó: 5 điểm B,H,E,T,D cùng thuộc 1 đường tròn => ^BTD = ^BED = 900 

Mặt khác: ^DTE = 180- ^DBE = 1800 - ^BAC = ^BTC => ^DTE = ^BTC => ^BTD = ^CTE

Suy ra: ^CTE = 900 => T nằm trên đường tròn (CE) cố định. Mà T cũng thuộc (O) cố định.

Nên T là điểm cố định. Do đó: Dây CT của đường tròn (HCS) cố định

=> Tâm L của (HCS) luôn nằm trên đường trung trực của đoạn CT cố định (đpcm).

22 tháng 1 2017

Bạn vẽ hình ra nha,mình sẽ giải cho bạn

20 tháng 7 2019

A B C O M E D S H

Gọi S là trung điểm của đoạn OM, H là hình chiếu của S trên DE. Khi đó khoảng cách từ S đến DE là SH.

Ta sẽ chỉ ra SH = const, thật vậy: Do BM,CM là các tiếp tuyến tại B,C của (O) nên ^OBM = ^OCM (=900)

=> Tứ giác BOCM nội tiếp (OM). Ta cũng có: ^MEC = ^BAC (Vì ME // AB)

Theo tính chất góc tạo bởi tiếp tuyến và dây có ^BAC = ^MBC. Do đó ^MEC = ^MBC

=> Tứ giác MCEB nội tiếp. Tương tự, tứ giác MBDC nội tiếp

Từ đó sáu điểm B,D,O,E,C,M cùng thuộc đường tròn (OM) tâm là S => SD = SE = OM/2

Ta lại có OM2 = OC2 + CM2 = const (Vì O,C,M cố định) => SD = SE = const

Mặt khác ^DSE = 2^DME = 2^BAC = Sđ(BC = const => ^SDE = const => Sin^DSE = const

Hay \(\frac{SH}{SD}=const\). Mà SD không đổi nên SH không đổi => H cách S một khoảng không đổi

Ta thấy S cố định => (S;SH) cố định. Do DE vuông góc SH tại H nên DE luôn tiếp xúc với (S;SH) cố định (đpcm).

27 tháng 3 2016

góc GDC=góc GBC=90  => tứ giác nội típ

I là trung điểm của GC

27 tháng 3 2016

BFC vuông cân niềm tin ak

24 tháng 7 2017

a) Dễ thấy tứ giác IBAC là tứ giác nội tiếp. Vậy thì \(\widehat{CIA}=\widehat{CBA};\widehat{BIA}=\widehat{BCA}\)

Mà \(\widehat{CBA}=\widehat{BCA}\Rightarrow\widehat{CIA}=\widehat{BIA}\) hay IA là phân giác góc BIC.

b) Do KD // AB nên \(\widehat{EDK}=\widehat{EAB}\) (Đồng vị)

Mà \(\widehat{EAB}=\widehat{ICB}\) (Góc nội tiếp cùng chắn cung IB)

Nên \(\widehat{IDH}=\widehat{ICH}\Rightarrow\) tứ giác IHDC nội tiếp. Vậy thì \(\widehat{HID}=\widehat{HCD}\) (cùng chắn cung HD)

Mà \(\widehat{HCD}=\widehat{BED}\) (góc nội tiếp cùng chắn cung BD)

nên \(\widehat{HID}=\widehat{BED}\Rightarrow\) IH // EB

Xét tam giác EKD có I là trung điểm ED, IH // EK nên IH là đường trung bình hay H là trung điểm DK.