K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2022

a.Vì P,H đối xứng qua AM, H, Q đối xứng qua MB
→HI⊥AM,HJ⊥MB→HI⊥AM,HJ⊥MB
Mà AM⊥MB→MIHJAM⊥MB→MIHJ là hình chữ nhật

→→bốn điểm M , I , H , J thuộc một đường tròn.

b.Ta có : HI⊥AM,MH⊥AB,HJ⊥MB→MI.MA=MH2=MJ.MBHI⊥AM,MH⊥AB,HJ⊥MB→MI.MA=MH2=MJ.MB

c.Vì P,HP,H đối xứng qua AM
→ˆPMA=ˆAMH=ˆMBA→PM→PMA^=AMH^=MBA^→PM là tiếp tuyến của (O)

Tương tự MQMQ là tiếp tuyến của (O)
→PQ→PQ là tiếp tuyến của (O)

d.Ta có :
BKKP=BQAP=BHAH=BJJM→KJ//MPBKKP=BQAP=BHAH=BJJM→KJ//MP

Tương tự KI//MQ→I,K,JKI//MQ→I,K,J thẳng hàng

22 tháng 8 2021

Gọi O, J lần lượt là trung điểm của AB và MB.
Do MB là đường kính của nửa đường tròn tâm J nên ^MIB=90o^CIM=90o.

Vậy nên tứ giác CHMI nội tiếp.

^HIM=^HCM.

Tam giác ACM cân tại C nên ^HCM=^HCA.

Mà ^HCA=^HBC (Cùng phụ góc CAB)

Tam giác IJB cân tại J nên ^HBC=^JIB.

Tóm lại : ^HIM=^JIB^HIM+^MIJ=^JIB+^MIJ

^HIJ=^MIB=90o.

Vậy nên HI là tiếp tuyến tại I của đường trong đường kính MB

17 tháng 11 2021

Gọi O, J lần lượt là trung điểm của AB và MB.
Do MB là đường kính của nửa đường tròn tâm J nên \widehat{MIB}=90^o\Rightarrow\widehat{CIM}=90^oMIB=90oCIM=90o.

Vậy nên tứ giác CHMI nội tiếp.

\Rightarrow\widehat{HIM}=\widehat{HCM}HIM=HCM.

Tam giác ACM cân tại C nên \widehat{HCM}=\widehat{HCA}HCM=HCA.

Mà \widehat{HCA}=\widehat{HBC}HCA=HBC (Cùng phụ góc CAB)

Tam giác IJB cân tại J nên \widehat{HBC}=\widehat{JIB}HBC=JIB.

suy ra : \widehat{HIM}=\widehat{JIB}\Rightarrow\widehat{HIM}+\widehat{MIJ}=\widehat{JIB}+\widehat{MIJ}HIM=JIBHIM+MIJ=JIB+MIJ

\Rightarrow\widehat{HIJ}=\widehat{MIB}=90^o.HIJ=MIB=90o.

Vậy nên HI là tiếp tuyến tại I của đường trong đường kính MB.

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0
28 tháng 12 2016

a/ Xét tam giác ABC nội tiếp đường tròn (O) có AB là đường kính của đường tròn nên tam giác ABC là tam giác vuông(Nếu một tam giác có một cạnh là đường kính của đường tròn ngoại tiếp tam giác đó.....)

b/ Vì D là giao điểm hai tiếp tuyến tại A và C của đường tròn (O) nên: DA=DC

D1=D2(t/c 2 tiếp tuyến cắt nhau)

Xét tam giác DHA=DHC(c.g.c).....nênH1=H2

Mà H1+H2=180....nên H1=H2=90...

30 tháng 12 2018

A H B C M I D K F P Q G Note:Hình hơi lệch xíu ^^

a, Vì CM là tiếp tuyến của (A)

=> \(CM\perp AM\)

=> ^CMA = 90o

=> M thuộc đường tròn đường kính AC

Vì ^CHA = 90o

=> H  thuộc đường tròn đường kính AC

Do đó : M và H cùng  thuộc đường tròn đường kính AC

hay 4 điểm A,C,M,H cùng thuộc đường tròn đường kính AC

b, Vì AM = AH ( Bán kính)

       CM = CH (tiếp tuyến)

=> AC là trung trực MH

=> \(AC\perp MH\)tại I

Xét \(\Delta\)AMC vuông tại M có MI là đường cao 

\(\Rightarrow MA^2=AI.AC\)(Hệ thức lượng)

c, Vì CM , CH là tiếp tuyến của (A)

=> AC là phân giác ^HAM

=> ^HAC = ^MAC 

Mà ^HAC + ^HAB  = 90o

=> ^MAC + ^HAB = 90o

Ta có: ^BAD + ^BAC + ^CAM = 180o (Kề bù)

=> ^BAD  + 90o + ^CAM = 180o

=> ^BAD + ^CAM = 90o

Do đó ^BAD = ^BAH (Cùng phụ ^CAM)

Xét \(\Delta\)BAD và \(\Delta\)BAH có:

AB chung

^BAD = ^BAH (cmt)

AD = AH (Bán kính (A) )

=> \(\Delta BAD=\Delta BAH\left(c.g.c\right)\)

=> ^ADB = ^AHB = 90o

\(\Rightarrow BD\perp AD\)

=> BD là tiếp tuyến của (A)

Làm đc đến đây thôi :(