K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì (Δ) // (d) \(\Rightarrow\left\{{}\begin{matrix}m=-2\\n\ne5\end{matrix}\right.\) \(\Rightarrow\left(\Delta\right):y=-2x+n\)

Phương trình hoành độ giao điểm của (Δ) và (P)

  \(-2x+n=-\dfrac{1}{2}x^2\) \(\Leftrightarrow\dfrac{1}{2}x^2-2x+n=0\) (*)

Ta có: \(\Delta'=1-\dfrac{1}{2}n\)

Để (Δ) và (P) có 1 điểm chung duy nhất 

\(\Leftrightarrow\) Phương trình (*) có nghiệm kép \(\Leftrightarrow1-\dfrac{1}{2}n=0\) \(\Leftrightarrow n=2\)  (Thỏa mãn)

  Vậy \(m=-2\) và \(n=2\)

  

25 tháng 3 2022

1) y= 2x-4

HD: y=ax+b

.... song song: a=2 và b≠-1

..... A(1;-2)  => x=1 và y=-2 và Δ....

a+b=-2

Hay 2+b=-2 (thay a=2) 

<=> b=-4

KL:................

2) Xét PT hoành độ giao điểm của (P) và (d)

x2=2(m-1)x-m+3 ⇔x2-2(m-1)x+m-3 =0 (1)

*) Δ'= (1-m)2-m+3= m2-3m+4=m2-2.\(\dfrac{3}{2}\)m+\(\dfrac{9}{4}\)+\(\dfrac{7}{4}\)=\(\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\). Vậy PT (1) có 2 nghiệm phân biệt x1; x2.

*) Theo hệ thức Viet ta có: 

S=x1+x2=2(m-1) và P=x1.x2=m-3

*) Ta có: \(M=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

Thay S và P vào M ta có:

\(M=\left[2\left(m-1\right)\right]^2-2.\left(m-3\right)=4m^2-10m+10\\ =\left(2m\right)^2-2.2m.\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}=\left(2m-\dfrac{5}{2}\right)^2+\dfrac{15}{4}\)

 

Vì (...)2≥0 nên M= (...)2+\(\dfrac{15}{4}\)\(\dfrac{15}{4}\)

Vậy M nhỏ nhất khi M=\(\dfrac{15}{4}\) khi 2m-\(\dfrac{5}{2}\)=0

 

Bài 1:   a) Cho hàm số f(x) = (a- 1)x + b. Xác định hàm số biết f(-1) = 2014 ; f(2) = 2017b) Tìm m;n để đa thức P(x) = mx3 + (m + 2)x2 - (3n - 5)x - 4n đồng thời chia hết cho x + 1 và x - 3Bài 2: Cho đường thẳng (d): y = 4xviết phương trình đường thẳng (d1) song song với đường thẳng (d) và có tung độ gốc bằng 10Bài 3: Xác định a;b để đồ thị hàm số y = ax + b đi qua A(3;-1) và B(-3;2)Bài 4: Cho 2 hàm số bậc...
Đọc tiếp

Bài 1:   a) Cho hàm số f(x) = (a- 1)x + b. Xác định hàm số biết f(-1) = 2014 ; f(2) = 2017

b) Tìm m;n để đa thức P(x) = mx3 + (m + 2)x2 - (3n - 5)x - 4n đồng thời chia hết cho x + 1 và x - 3

Bài 2: Cho đường thẳng (d): y = 4x

viết phương trình đường thẳng (d1) song song với đường thẳng (d) và có tung độ gốc bằng 10

Bài 3: Xác định a;b để đồ thị hàm số y = ax + b đi qua A(3;-1) và B(-3;2)

Bài 4: Cho 2 hàm số bậc nhất y = x - m và y = -2x + m - 1

a) Xác định tọa độ giao điểm của đồ thị 2 hàm số khi m = 2

b) Vẽ đồ thị 2 hàm số trên khi m = 2

c) Tìm m để đồ thị 2 hàm số cắt nhau tại 1 điểm trên trục tung

Bài 5: Viết phương trình đường thẳng (d) có hệ số góc bằng 7 và đi qua điểm M(2;-1)

Bài 6: Cho 3 đường thẳng: (d1): y = -2x + 3; (d2): y = 3x - 2; (d3): y = m(x + 1) - 5

a) Tìm m để 3 đường thẳng đã cho đồng quy

b) Chứng minh rằng đường thẳng (d3) luôn đi qua 1 điểm cố định khi m thay đổi

 

0
25 tháng 3 2022

a, Vì hàm số y=ax+b song song với đường thẳng y=3x nên a=3 (1)

và hàm số đi qua điểm M(5;1) nên ta có x=5; y=1 (2)

Từ (1) và (2), ta có 3.5+b=1 

                           <=> b= -14

Vậy hàm số y=ax+b có dạng y=3x-14

26 tháng 3 2022

a) y=3x-14

b) xét...

-x2=2x+m ⇔x2+2x+m=0 (1)

.................. Δ'=0 hay 1-m=0

Suy ra m=1

KL:...............

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

Lời giải:

1)

Ý 1: ĐTHS (d) song song với đường thẳng $y=2x-3$ nên \(a=2\)

Mặt khác (d) đi qua \(A(-3;\frac{1}{2})\Rightarrow \frac{1}{2}=a.(-3)+b=2(-3)+b\)

\(\Leftrightarrow b=\frac{13}{2}\)

PTĐT cần tìm: \(y=2x+\frac{13}{2}\)

Ý 2: (d): $y=ax+b$ song song với đường thẳng \(y=-x+4\)

\(\Rightarrow a=-1\)

Mặt khác (d) đi qua điểm (-3;1) nên:

\(1=a(-3)+b=(-1)(-3)+b\)

\(\Leftrightarrow b=-2\)

PTĐT cần tìm: \(y=-x-2\)

Ý 3: Vì đường thẳng (d) cần tìm song song với đường thẳng \(y=2x-3\Rightarrow a=2\)

Mặt khác (d) đi qua điểm \((\frac{1}{3}; \frac{4}{3})\) nên:

\(\frac{4}{3}=\frac{1}{3}a+b=\frac{1}{3}.2+b\Leftrightarrow b=\frac{2}{3}\)

Vậy PTĐT cần tìm là \(y=2x+\frac{2}{3}\)

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

2)

Gọi E là giao điểm của $(d_1), (d_2)$

Khi đó:

\(y_E=-x_E+6=3x_E-6\)

\(\Leftrightarrow x_E=3\Rightarrow y_E=3\)

Như vậy điểm E có tọa độ \((3;3)\)

Để 3 đường thẳng $(d_1),(d_2),(d_3)$ đồng quy thì \(E\in (d_3)\)

\(\Leftrightarrow 3=3m+m-5\Leftrightarrow 4m=8\Leftrightarrow m=2\)

Vậy m=2

1.2:Sửa đề: (P): y=x^2

PTHĐGĐ là:

x^2-x-m=0

Δ=(-1)^2-4*1*(-m)=4m+1

Để (P) cắt (d) tại 1 điểm duy nhất thì 4m+1=0

=>m=-1/4

23 tháng 12 2023

a: Thay x=2 và y=-3 vào (d), ta được:

\(2\left(2m-1\right)-2m+5=-3\)

=>\(4m-2-2m+5=-3\)

=>2m+3=-3

=>2m=-6

=>\(m=-\dfrac{6}{2}=-3\)

b: Để (d)//(d') thì \(\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=3\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne2\end{matrix}\right.\)

=>m=3/2

Thay m=3/2 vào (d), ta được:

\(y=\left(2\cdot\dfrac{3}{2}-1\right)x-2\cdot\dfrac{3}{2}+5=2x+2\)

loading...

y=2x+2 nên a=2

Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox

\(tan\alpha=2\)

=>\(\alpha\simeq63^026'\)

13 tháng 5 2017

Vì đồ thị (p) đi qua điểm \(A\left(\dfrac{-1}{2};\dfrac{-1}{4}\right)\) nên ta có:

\(-\dfrac{1}{4}=a.\left(-\dfrac{1}{2}\right)^2\)

\(\Rightarrow-\dfrac{1}{4}=a.\dfrac{1}{4}\Rightarrow a=-1\)

Khi đó hàm số (p) có dạng: \(y=-x^2\)

Gọi phương trình đường thẳng (d) cần tìm là: \(y=ax+b\left(a\ne0\right)\)

Vì (d) song song với đường thẳng \(y=-2x-1\)

\(\Rightarrow\left\{{}\begin{matrix}a=-2\\b\ne-1\end{matrix}\right.\)

Phương trình (d) có dạng \(y=-2x+b\left(b\ne-1\right)\)

Xét phương trình hoành độ tiếp điểm của (p) và (d) :

\(-x^2=-2x+b\)

\(\Leftrightarrow-x^2+2x-b=0\left(1\right)\)

Xét phương trình (1) có \(\Delta=2^2-4.\left(-1\right).\left(-b\right)=4-4b\)

Vì (d) tiếp xúc với (p) \(\Rightarrow\) phương trình (1) có nghiệm kép \(\Leftrightarrow\Delta=0\Leftrightarrow4-4b=0\Leftrightarrow b=1\) (tm \(b\ne-1\) )

Vậy phương trình đường thẳng (d) cần tìm là \(y=-2x+1\)

13 tháng 5 2017

Vì Parabol (P) đi qua điểm \(A\left(\dfrac{-1}{2};-\dfrac{1}{4}\right)\) nên thỏa mãn:

\(a.\left(-\dfrac{1}{2}\right)^2=-\dfrac{1}{4}\\ \Leftrightarrow a.\dfrac{1}{4}=-\dfrac{1}{4}\\ \Leftrightarrow a=-1\)

Vậy hệ số a của (P) là -1

b,Giả sử pt đường thẳng (d) có dạng y=ax+b

Vì (d) song song với đường thẳng y=-2x-1 nên thỏa mãn:

\(\left\{{}\begin{matrix}a=-2\\b\ne-1\end{matrix}\right.\)

Khi đó phương trình đường thẳng (d) trở thành y=-2x+b

Ta có phương trình hoành độ giao điểm của (d) và (P) là

\(-x^2+2x-b=0\) (*)

Vì pt đường thẳng (d) tiếp xúc với (P) nên phương trình (*) có 1 nghiệm duy nhất tức là \(\Delta\)'=0\(\Leftrightarrow1^2-b=0\\ \Leftrightarrow b=1\left(tmđk\right)\)

Vậy phương trình đường thẳng (d) là y=-2x+1