Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) y= 2x-4
HD: y=ax+b
.... song song: a=2 và b≠-1
..... A(1;-2) => x=1 và y=-2 và Δ....
a+b=-2
Hay 2+b=-2 (thay a=2)
<=> b=-4
KL:................
2) Xét PT hoành độ giao điểm của (P) và (d)
x2=2(m-1)x-m+3 ⇔x2-2(m-1)x+m-3 =0 (1)
*) Δ'= (1-m)2-m+3= m2-3m+4=m2-2.\(\dfrac{3}{2}\)m+\(\dfrac{9}{4}\)+\(\dfrac{7}{4}\)=\(\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\). Vậy PT (1) có 2 nghiệm phân biệt x1; x2.
*) Theo hệ thức Viet ta có:
S=x1+x2=2(m-1) và P=x1.x2=m-3
*) Ta có: \(M=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
Thay S và P vào M ta có:
\(M=\left[2\left(m-1\right)\right]^2-2.\left(m-3\right)=4m^2-10m+10\\ =\left(2m\right)^2-2.2m.\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}=\left(2m-\dfrac{5}{2}\right)^2+\dfrac{15}{4}\)
Vì (...)2≥0 nên M= (...)2+\(\dfrac{15}{4}\)≥\(\dfrac{15}{4}\)
Vậy M nhỏ nhất khi M=\(\dfrac{15}{4}\) khi 2m-\(\dfrac{5}{2}\)=0
a, Vì hàm số y=ax+b song song với đường thẳng y=3x nên a=3 (1)
và hàm số đi qua điểm M(5;1) nên ta có x=5; y=1 (2)
Từ (1) và (2), ta có 3.5+b=1
<=> b= -14
Vậy hàm số y=ax+b có dạng y=3x-14
a) y=3x-14
b) xét...
-x2=2x+m ⇔x2+2x+m=0 (1)
.................. Δ'=0 hay 1-m=0
Suy ra m=1
KL:...............
Lời giải:
1)
Ý 1: ĐTHS (d) song song với đường thẳng $y=2x-3$ nên \(a=2\)
Mặt khác (d) đi qua \(A(-3;\frac{1}{2})\Rightarrow \frac{1}{2}=a.(-3)+b=2(-3)+b\)
\(\Leftrightarrow b=\frac{13}{2}\)
PTĐT cần tìm: \(y=2x+\frac{13}{2}\)
Ý 2: (d): $y=ax+b$ song song với đường thẳng \(y=-x+4\)
\(\Rightarrow a=-1\)
Mặt khác (d) đi qua điểm (-3;1) nên:
\(1=a(-3)+b=(-1)(-3)+b\)
\(\Leftrightarrow b=-2\)
PTĐT cần tìm: \(y=-x-2\)
Ý 3: Vì đường thẳng (d) cần tìm song song với đường thẳng \(y=2x-3\Rightarrow a=2\)
Mặt khác (d) đi qua điểm \((\frac{1}{3}; \frac{4}{3})\) nên:
\(\frac{4}{3}=\frac{1}{3}a+b=\frac{1}{3}.2+b\Leftrightarrow b=\frac{2}{3}\)
Vậy PTĐT cần tìm là \(y=2x+\frac{2}{3}\)
2)
Gọi E là giao điểm của $(d_1), (d_2)$
Khi đó:
\(y_E=-x_E+6=3x_E-6\)
\(\Leftrightarrow x_E=3\Rightarrow y_E=3\)
Như vậy điểm E có tọa độ \((3;3)\)
Để 3 đường thẳng $(d_1),(d_2),(d_3)$ đồng quy thì \(E\in (d_3)\)
\(\Leftrightarrow 3=3m+m-5\Leftrightarrow 4m=8\Leftrightarrow m=2\)
Vậy m=2
1.2:Sửa đề: (P): y=x^2
PTHĐGĐ là:
x^2-x-m=0
Δ=(-1)^2-4*1*(-m)=4m+1
Để (P) cắt (d) tại 1 điểm duy nhất thì 4m+1=0
=>m=-1/4
a: Thay x=2 và y=-3 vào (d), ta được:
\(2\left(2m-1\right)-2m+5=-3\)
=>\(4m-2-2m+5=-3\)
=>2m+3=-3
=>2m=-6
=>\(m=-\dfrac{6}{2}=-3\)
b: Để (d)//(d') thì \(\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m=3\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne2\end{matrix}\right.\)
=>m=3/2
Thay m=3/2 vào (d), ta được:
\(y=\left(2\cdot\dfrac{3}{2}-1\right)x-2\cdot\dfrac{3}{2}+5=2x+2\)
y=2x+2 nên a=2
Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox
\(tan\alpha=2\)
=>\(\alpha\simeq63^026'\)
Vì đồ thị (p) đi qua điểm \(A\left(\dfrac{-1}{2};\dfrac{-1}{4}\right)\) nên ta có:
\(-\dfrac{1}{4}=a.\left(-\dfrac{1}{2}\right)^2\)
\(\Rightarrow-\dfrac{1}{4}=a.\dfrac{1}{4}\Rightarrow a=-1\)
Khi đó hàm số (p) có dạng: \(y=-x^2\)
Gọi phương trình đường thẳng (d) cần tìm là: \(y=ax+b\left(a\ne0\right)\)
Vì (d) song song với đường thẳng \(y=-2x-1\)
\(\Rightarrow\left\{{}\begin{matrix}a=-2\\b\ne-1\end{matrix}\right.\)
Phương trình (d) có dạng \(y=-2x+b\left(b\ne-1\right)\)
Xét phương trình hoành độ tiếp điểm của (p) và (d) :
\(-x^2=-2x+b\)
\(\Leftrightarrow-x^2+2x-b=0\left(1\right)\)
Xét phương trình (1) có \(\Delta=2^2-4.\left(-1\right).\left(-b\right)=4-4b\)
Vì (d) tiếp xúc với (p) \(\Rightarrow\) phương trình (1) có nghiệm kép \(\Leftrightarrow\Delta=0\Leftrightarrow4-4b=0\Leftrightarrow b=1\) (tm \(b\ne-1\) )
Vậy phương trình đường thẳng (d) cần tìm là \(y=-2x+1\)
Vì Parabol (P) đi qua điểm \(A\left(\dfrac{-1}{2};-\dfrac{1}{4}\right)\) nên thỏa mãn:
\(a.\left(-\dfrac{1}{2}\right)^2=-\dfrac{1}{4}\\ \Leftrightarrow a.\dfrac{1}{4}=-\dfrac{1}{4}\\ \Leftrightarrow a=-1\)
Vậy hệ số a của (P) là -1
b,Giả sử pt đường thẳng (d) có dạng y=ax+b
Vì (d) song song với đường thẳng y=-2x-1 nên thỏa mãn:
\(\left\{{}\begin{matrix}a=-2\\b\ne-1\end{matrix}\right.\)
Khi đó phương trình đường thẳng (d) trở thành y=-2x+b
Ta có phương trình hoành độ giao điểm của (d) và (P) là
\(-x^2+2x-b=0\) (*)
Vì pt đường thẳng (d) tiếp xúc với (P) nên phương trình (*) có 1 nghiệm duy nhất tức là \(\Delta\)'=0\(\Leftrightarrow1^2-b=0\\ \Leftrightarrow b=1\left(tmđk\right)\)
Vậy phương trình đường thẳng (d) là y=-2x+1
Vì (Δ) // (d) \(\Rightarrow\left\{{}\begin{matrix}m=-2\\n\ne5\end{matrix}\right.\) \(\Rightarrow\left(\Delta\right):y=-2x+n\)
Phương trình hoành độ giao điểm của (Δ) và (P)
\(-2x+n=-\dfrac{1}{2}x^2\) \(\Leftrightarrow\dfrac{1}{2}x^2-2x+n=0\) (*)
Ta có: \(\Delta'=1-\dfrac{1}{2}n\)
Để (Δ) và (P) có 1 điểm chung duy nhất
\(\Leftrightarrow\) Phương trình (*) có nghiệm kép \(\Leftrightarrow1-\dfrac{1}{2}n=0\) \(\Leftrightarrow n=2\) (Thỏa mãn)
Vậy \(m=-2\) và \(n=2\)