K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔOMN cân tại O có OD là trung tuyến

nên OD vuông góc NA

góc ODA=góc OBA=90 độ

=>ODBA nội tiếp

b; Xét ΔABM và ΔANB có

góc ABM=góc ANB

góc BAM chung

=>ΔABM đồng dạng với ΔANB

=>AB/AN=AM/AB

=>AB^2=AN*AM

15 tháng 5 2016

bạn vẽ hình ra đi

15 tháng 5 2016

Hình đâu bạn?

25 tháng 10 2023

a: Xét (O) có

MA,MN là tiếp tuyến

=>MA=MN

mà OA=ON

nên OM là đường trung trực của AN

=>OM\(\perp\)AN(1)

Xét (O) có
ΔANB nội tiếp

AB là đường kính

Do đó: ΔANB vuông tại N

=>AN\(\perp\)NB(2)

Từ (1) và (2) suy ra OM//NB

b: Xét ΔMAO vuông tại A và ΔKOB vuông tại O có

AO=OB

\(\widehat{AOM}=\widehat{OBK}\)

Do đó: ΔMAO=ΔKOB

=>MA=KO

Xét tứ giác MAOK có

MA//OK

MA=OK

Do đó: MAOK là hình bình hành

mà \(\widehat{MAO}=90^0\)

nên MAOK là hình chữ nhật

=>KM\(\perp\)xy

 

27 tháng 10 2017

O B C K I A H

a) Xét tam giác vuông ABO có đường cao BK, áp dụng hệ thức lượng trong tam giác ta có: 

\(OB^2=OK.OA\Rightarrow5^2=OK.10\Rightarrow OK=2,5\left(cm\right)\)

b) Xét tam giác cân OBC có OK là đường cao nên đồng thời là phân giác.

Vậy thì \(\widehat{BOA}=\widehat{COA}\)

Suy ra \(\Delta ABO=\Delta ACO\left(c-g-c\right)\Rightarrow\widehat{ACO}=\widehat{ABO}=90^o\)

Vậy nên AC là tiếp tuyến của đường tròn (O).

c) Ta thấy ngay \(\Delta KOI\sim\Delta HOA\left(g-g\right)\Rightarrow\frac{OI}{OA}=\frac{OK}{OH}\Rightarrow OI=\frac{OK.OA}{OH}\)

Xét tam giac vuông ABO có BK là đường cao nên áp dụng hệ thức lượng trong tam giác ta có:

\(OK.OA=OB^2=R^2\) không đổi. Lại có OH cũng không đổi (bằng khoảng cách từ O tới đường thẳng xy)

Vậy nên \(OI=\frac{R^2}{OH}\) không đổi.

Vậy khi A di chuyển trên đường thẳng xy thì độ dài đoạn thẳng OI không đổi.