Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài không chính xác, chỉ có thể tìm d để biểu thức đạt GTNN chứ ko tồn tại đường thẳng để biểu thức đạt GTLN
ta có : đường thẳng đi qua điểm \(M\left(4;9\right)\ne O\) \(\Rightarrow d\ne Ox;Oy\)
đặc : \(\left(d\right):ax+by+c=0\)
ta có : \(d\cap Ox\) tại \(\left(\dfrac{-c}{a};0\right)\) và \(d\cap Oy\) tại \(\left(0;\dfrac{-c}{b}\right)\)
ta có \(\left(OA+OB\right)_{min}\Rightarrow\left(OA+OB\right)^2_{min}\)
mà \(\left(OA+OB\right)^2=OA^2+OB^2+2OA.OB=AB^2+2OAOB\)
\(\Rightarrow AB_{min}\) \(\Rightarrow\Delta_{ABC}\) vuông cân
ta có : \(d\) ở phần tư thứ nhất của mf\(xOy\) :
\(\Rightarrow\overrightarrow{I}\left(1;1\right)\) là véctơ pháp tuyến của đường thẳng
\(\Rightarrow\left(d\right):x-4+y-9=0\Leftrightarrow x+y-13=0\)
Từ đề bài ta có:
\(\left\{{}\begin{matrix}-3a+b=2\\0.a+b=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=-4\end{matrix}\right.\) \(\Rightarrow y=-2x-4\)
Đường thẳng d qua M có dạng: \(y=ax+b\)
Thế tọa độ M: \(1=a+b\Rightarrow b=1-a\Rightarrow y=ax+1-a\) với \(a\ne\left\{0;1\right\}\)
Tọa độ A: \(A\left(\dfrac{a-1}{a};0\right)\) ; tọa độ B: \(B\left(0;1-a\right)\) \(\Rightarrow a< 0\)
\(\Rightarrow OA=\dfrac{a-1}{a}\) ; \(OB=1-a\)
\(S_{OAB}=\dfrac{1}{2}OA.OB=2\Leftrightarrow\left(\dfrac{a-1}{a}\right)\left(1-a\right)=4\)
\(\Leftrightarrow\left(a-1\right)^2+4a=0\Leftrightarrow a^2+2a+1=0\Rightarrow a=-1\)
\(\Rightarrow y=-x+2\)
Đáp án D
Gọi A( a; 0) và B( 0; b) .
Phương trình đoạn chắn của :
Đường thẳng này qua điểm M( 2 ; -3) nên:
Để tam giác OAB vuông cân thì:
Do A thuộc d1 nên tọa độ có dạng \(A\left(a;3a-3\right)\)
Do B thuộc d2 nên tọa độ có dạng: \(B\left(b;-b-2\right)\)
Áp dụng công thức trung điểm:
\(\Rightarrow\left\{{}\begin{matrix}a+0=2b\\3a-3+2=2\left(-b-2\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-2b=0\\3a+2b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{3}{4}\\b=-\dfrac{3}{8}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}A\left(-\dfrac{3}{4};-\dfrac{21}{4}\right)\\B\left(-\dfrac{3}{8},-\dfrac{13}{8}\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{AB}=\left(\dfrac{3}{8};\dfrac{29}{8}\right)\)
Phương trình d có dạng:
\(29x-3\left(y-2\right)=0\Leftrightarrow29x-3y+6=0\)