K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2024

Phương trình hoành độ giao điểm là:

\(x^2=2mx+2m-3\)

=>\(x^2-2mx-2m+3=0\)(1)

Để (d) tiếp xúc với (P) thì phương trình (1) có nghiệm kép

=>Δ=0

=>\(\left(-2m\right)^2-4\left(-2m+3\right)=0\)

=>\(4m^2+8m-12=0\)

=>\(m^2+2m-3=0\)

=>(m+3)(m-1)=0

=>\(\left[{}\begin{matrix}m+3=0\\m-1=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}m=-3\\m=1\end{matrix}\right.\)

29 tháng 11 2024

ĐKXĐ: \(m\ne0\)

Phương trình hoành độ giao điểm của (P) và (d):

\(x^2=2mx+2m-3\)

\(x^2-2mx-2m+3=0\)

\(\Delta=\left(-2m\right)^2-4.1.\left(-2m+3\right)\)

\(=4m^2+8m-12\)

\(=4.\left(m^2+2m-3\right)\)

Để (P) tiếp xúc với (d) thì \(\Delta=0\)

\(4\left(m^2+2m-3\right)=0\)

\(m^2+2m-3=0\)

\(\Delta_m=2^2-4.1.\left(-3\right)=16\)

\(m_1=\dfrac{-2+\sqrt{16}}{2}=1\) (nhận)

\(m_2=\dfrac{-2-\sqrt{16}}{2}=-3\) (nhận)

Vậy \(m=-3;m=1\) thì (P) và (d) tiếp xúc

13 tháng 6 2021

pt hoành độ giao điểm: \(x^2-2mx-2m+3=0\)

Để đường thẳng tiếp xúc với parabol thì pt có 1 nghiệm duy nhất

\(\Rightarrow\Delta'=0\)

\(\Delta'=m^2+2m-3=0\Rightarrow\left(m-1\right)\left(m+3\right)=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)

a: Thay x=1 và y=5 vào (d), ta được:

2m+2m-3=5

=>4m-3=5

hay m=2

b: Phương trình hoành độ giao điểm là:

\(x^2-2mx-2m+3=0\)

Để(P) tiếp xúc với (d) thì \(\left(-2m\right)^2-4\left(-2m+3\right)=0\)

\(\Leftrightarrow4m^2+8m-12=0\)

\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=0\)

=>m=-3 hoặc m=1

10 tháng 6 2021

a) (d) đi qua \(A\left(1;5\right)\Rightarrow5=2m+2m-3\Rightarrow4m=8\Rightarrow m=2\)

\(\Rightarrow y=4x+1\)

b) pt hoành độ giao điểm \(x^2-2mx-2m+3=0\)

Để (d) tiếp xúc với (P) thì pt có nghiệm kép \(\Delta=0\)

\(\Delta=\left(2m\right)^2+8m-12=4m^2+8m-12\)

\(\Rightarrow4m^2+8m-12=0\Rightarrow m^2+2m-3=0\Rightarrow\left(m-1\right)\left(m+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)

26 tháng 3 2022

a, (d) đi qua A(1;5) hay A(1;5) thuộc (d)

<=> \(5=4m-3\Leftrightarrow m=2\)

b, Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-2mx-2m+3=0\)

\(\Delta'=m^2-\left(-2m+3\right)=m^2+2m-3\)

Để (P) tiếp xúc (d) thì pt có nghiệm kép khi 

\(m^2+2m-3=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-3\end{cases}}\)

Phương trình hoành độ giao điểm là: 

\(-x^2=2mx+3-m\)

\(\Leftrightarrow-x^2-2mx-3+m=0\)

\(\Delta=4m^2+4\cdot1\cdot\left(m-3\right)=4m^2+4m-12=4m^2+4m+1-13\)

\(\Leftrightarrow\Delta=\left(2m+1\right)^2-13\)

Để (P) tiếp xúc với (d) thì \(\left(2m+1\right)^2=13\)

\(\Leftrightarrow\left[{}\begin{matrix}2m+1=\sqrt{13}\\2m+1=-\sqrt{13}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{\sqrt{13}-1}{2}\\m=\dfrac{-\sqrt{13}-1}{2}\end{matrix}\right.\)

20 tháng 2 2021

Bạn ơi còn tìm toạ độ tiếp điểm nữa mà bạn. Bạn giúp mình được không

17 tháng 2 2022

Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-2mx-m+3=0\)

\(\Delta'=m^2-\left(-m+3\right)=m^2+m-3\)

a, có thiếu đề khum bạn ? 

b, Để (P) tiếp xúc (d) 

\(m^2+m-3=0\Leftrightarrow m=\dfrac{-1\pm\sqrt{13}}{2}\)

-cần chi tiết hơn thì bạn dùng delta nhé 

 

NV
17 tháng 2 2022

Phương trình hoành độ giao điểm: \(x^2=2mx+m-3\Leftrightarrow x^2-2mx-m+3=0\) (1)

a. d cắt (P) \(\Leftrightarrow\) (1) có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta'=m^2+m-3>0\Rightarrow\left[{}\begin{matrix}m>\dfrac{-1+\sqrt{13}}{2}\\m< \dfrac{-1-\sqrt{13}}{2}\end{matrix}\right.\)

b. d tiếp xúc (P) khi (1) có nghiệm kép

\(\Leftrightarrow\Delta'=m^2+m-3=0\Rightarrow m=\dfrac{-1\pm\sqrt{13}}{2}\)

21 tháng 11 2018

parabol (P): y =  x 2  ; đường thẳng (d): y = 2x + m (m là tham số).

a) phương trình hoành độ giao điểm của (P) và (d) là:

x 2  = 2x + m ⇔  x 2 - 2x - m = 0

Δ'= 1 + m

(d) tiếp xúc với (P) khi phương trình hoành độ giao điểm có duy nhất 1 nghiệm

⇔ Δ'= 1 + m = 0 ⇔ m = -1

Khi đó hoành độ giao điểm là x = 1

3 tháng 2 2021

1. Ta có đồ thị :

2. - Xét phương trình hoành độ giao điểm : \(x^2-2x-m=0\)

Có : \(\Delta^,=\left(-1\right)^2-\left(-m\right).1=m+1\)

- Để ( P ) tiếp xúc với d \(\Leftrightarrow\Delta^,=0\)

\(\Leftrightarrow m=-1\)

3. Có phương trình hoành độ giao điểm :

\(x^2-2x-\left(-1\right)=x^2-2x+1=\left(x-1\right)^2\)

\(\Rightarrow x=1\)

\(\Rightarrow y=1\)

Vậy tọa độ tiếp điểm \(I\left(1;1\right)\)