K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

PTHĐGĐ là:

x^2-mx-5=0

a=1; b=-m; c=-5

Vì ac<0 nên (d) luôn cắt (P) tại hai điểm phân biệt

x1<x2; |x1|>|x2|

=>x1<0; x2>0

=>x1*x2<0

=>Luôn đúng

Phương trình hoành độ giao điểm: 

x2=2x−3m+5

⇔x2−2x+3m−5=0

(P) cắt (d) tại 2 điểm phân biệt khi (*) có Δ′>0Δ′>0 

⇔1−3m+5>0

⇔m<2

⇒x1+x2=2;x1.x2=3m−5

x21+x22=x1.x2+2

⇔(x1+x2)2−3x1.x2=2

⇔22−3(3m−5)=2

⇔m=179

6 tháng 5 2018

ko biết

Nhìn đã hoa mắt

KB nhé

em lớp 2 nên ko hiểu 

trả lời 

xin lỗi a e chưa học đên bài này 

a có thể lên hocj24 hỏi nha 

chúc a thành công

6 tháng 4 2022

Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=mx-1\)\(\Leftrightarrow x^2-mx+1=0\)(*)

pt (*) có \(\Delta=\left(-m\right)^2-4.1.\left(-1\right)=m^2+4\)

Vì \(m^2+4>0\)nên \(\Delta>0\)hay pt (*) luôn có 2 nghiệm phân biệt, đồng nghĩa với việc (d) luôn cắt (P) tại 2 điểm phân biệt.

Áp dụng hệ thức Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=1\end{cases}}\)

Như vậy ta có \(x_2\left(x_1^2+1\right)=3\)\(\Leftrightarrow x_2x_1^2+x_2=3\)\(\Leftrightarrow x_1+x_2=3\)\(\Rightarrow m=3\)\

Vậy để (d) cắt (P) tại 2 điểm phân biệt có hoành độ thỏa mãn yêu cầu đề bài thì \(m=3\)

25 tháng 3 2022

a, Ta có A thuộc (P) <=> \(y_A=x^2_A\Rightarrow y_A=4\)Vậy A(-2;4) 

b, Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-2x-m^2+2m=0\)

\(\Delta=1-\left(-m^2+2m\right)=m^2-2m+1=\left(m-1\right)^2\ge0\)

Để pt có 2 nghiệm pb khi m khác 1 

c, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2+2m\end{cases}}\)

Vì x1 là nghiệm pt trên nên \(x_1^2=2x_1+m^2-2m\)

Thay vào ta được \(2x_1+m^2+2x_2=5m\)

\(\Leftrightarrow2\left(x_1+x_2\right)+m^2-5m=0\)

\(\Rightarrow m^2-5m+4=0\Leftrightarrow m=1\left(ktm\right);m=4\left(tm\right)\)

31 tháng 3 2022

b) x2-2x-m2+2m=0

Δ'= (-1)2+m2-2m= (m-1)2>0 thì m≠1

KL:....

c) với m≠1 thì PT có 2 nghiệm PB

C1. \(x_1=1-\sqrt{\left(m-1\right)^2}=1-\left|m-1\right|\)

tt. tính x2

C2. 

Theo Viets: \(S=x_1+x_2=2;P=x_1x_2=-m^2+2m\)

Ta có: \(x_1^2+2x_2=3m\Rightarrow x_1^2=3m-2x_2\)

Từ \(S=x_1+x_2=2\Rightarrow x_2=2-x_1\)Thay vào P ta có:

 \(P=x_1\left(2-x_1\right)=-m^2+2m\)

⇔2x1-x12=-m2+2m

⇔2x1- (3m-2x2)=-m2+2m (Thay x12=3m-2x2)

⇔2x1-3m+2x2=-m2+2m⇔2(x1+x2)=-m2+5m ⇔2.2=-m2+5m ⇔m=4 (TM) và m=1(KTM)

Vậy với m=4 thì .....

14 tháng 3 2022

ĐK \(x_2\ge0;\)

Phương trình hoành độ giao điểm 

x2 = mx + m + 1

\(\Leftrightarrow x^2-mx-m-1=0\)

Có \(\Delta=m^2+4\left(m+1\right)=\left(m+2\right)^2\ge0\)

\(\Rightarrow\)Phương trình có nghiệm với mọi m

Phương trình 2 nghiệm \(\hept{\begin{cases}x_1=\frac{m-\left|m+2\right|}{2}\\x_2=\frac{m+\left|m+2\right|}{2}\end{cases}}\)

Khi m + 2 < 0 thì x1 = m + 1 ; x2 = -1 (loại)

khi m + 2 \(\ge0\)thì x1 = -1 ; x2 = m + 1

\(\Rightarrow x_1=-1;x_2=m+1\)nghiệm phương trình 

Khi đó ta có -1 + m - m = \(\sqrt{m+1}-\sqrt[3]{8}\)

\(\Leftrightarrow\sqrt{m+1}=1\Leftrightarrow m=0\)(tm)