K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phương trình hoành độ giao điểm là:

\(x^2-3x-m^2+1=0\)

\(a=1;b=-3;c=-m^2+1\)

\(\text{Δ}=9-4\cdot1\cdot\left(-m^2+1\right)\)

\(=9+4m^2-4=4m^2+5>0\)

Do đó: (P) luôn cắt (d) tại hai điểm phân biệt

16 tháng 5 2022

Nguyễn Lê Phước Thịnh                                                         , mk cần bạn làm cái tìm m cơ!!!

24 tháng 5 2021

a, Thay m = -1/2 vào (d) ta được : 

\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)

Hoành độ giao điểm thỏa mãn phương trình 

\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)

\(\Delta=4-4\left(-3\right)=4+12=16>0\)

\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)

Vói x = -1 thì \(y=-2+3=1\)

Vớ x = 3 thì \(y=6+3=9\)

Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )

b, mình chưa học 

24 tháng 5 2021

\(y_1+y_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)

Xét phương trình hoành độ giao điểm của (d) và (P) ta có: 

\(x^2=2x-2m+2\)

\(\Leftrightarrow x^2-2x+2m-2=0\)

Theo hệ thức Vi-et ta có: 

\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)

Từ (1)  \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow4-4m+4=8\)

\(\Leftrightarrow m=0\)

vậy..

NV
5 tháng 3 2019

Pt hoành độ giao điểm: \(x^2-mx-5=0\) (1)

Để (P) cắt d tại 2 điểm phân biệt \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt

Do \(a.c=1.\left(-5\right)=-5< 0\Rightarrow\) pt luôn có 2 nghiệm pb trái dấu

Theo Viet: \(x_1+x_2=m\)

\(\left\{{}\begin{matrix}x_1>x_2\\\left|x_1\right|< \left|x_2\right|\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2>0\\x_1^2< x_2^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2>0\\\left(x_1-x_2\right)\left(x_1+x_2\right)< 0\end{matrix}\right.\)

\(\Rightarrow x_1+x_2< 0\Rightarrow m< 0\)

Vậy \(m< 0\) thì pt có 2 nghiệm thỏa mãn

5 tháng 6 2018

Đề thi vào 10 tỉnh Quảng Ngãi hồi sáng nek chứ đâu

5 tháng 6 2018

Nhầm hồi chiều
 

17 tháng 12 2022

a: Thay x=0 và y=5 vào y=mx+5, ta đc:

5=m*0+5(luôn đúng)

b: PTHĐGĐ là:

x^2-mx-5=0

Vì a*c<0

nên (P) luôn cắt (d) tại hai điểm phân biệt

x1<x2 mà |x1|>|x2| nên x1<x2<0

Để (P) cắt (d) tại hai điểm phân biệt âm thì

m/1<0 và -5/1<0

=>m<0

30 tháng 3 2019

Phương trình hoành độ giao điểm của (P) và (d) là :

\(x^2=2\left(m+3\right)x-m^2-3.\)

\(\Leftrightarrow x^2-2\left(m+3\right)x+m^2+3=0\left(1\right)\)

\(\Delta'=[-\left(m+3\right)]^2-m^2-3=m^2+6m+9-m^2-3=6m+6\)

Để (d) cắt (P) tại hai điểm phân biệt có hoành độ x; x2 thì phương trình (1) có hai nghiệm phân biệt xx2.

\(\Rightarrow\Delta'>0\Leftrightarrow6m+6>0\Leftrightarrow m>-1\)

Theo vi ét ta có:

\(\hept{\begin{cases}x_1+x_2=2\left(m+3\right)\\x_1x_2=m^2+3\end{cases}}\)

Thay vào hệ thức : \(x_1+x_2-\frac{x_1x_2}{x_1+x_2}=\frac{57}{4}\)ta được.

\(2\left(m+3\right)-\frac{m^2+3}{2\left(m+3\right)}=\frac{57}{4}\Leftrightarrow\frac{4\left(m+3\right)^2-m^2-3}{2\left(m+3\right)}=\frac{57}{4}\)

\(\Leftrightarrow\frac{4m^2+24m+36-m^2-3}{2m+6}=\frac{57}{4}\Leftrightarrow\frac{3m^2+24m+33}{2m+6}=\frac{57}{4}\)

\(\Leftrightarrow12m^2+96m+132=114m+342\)\(\Leftrightarrow12m^2-18m-210=0\Leftrightarrow2m^2-3m-35=0\)

\(m_1=5\left(TM\right);m_2=-\frac{7}{2}\left(KTM\right)\)

Vậy \(m=5\).

22 tháng 3 2020

Câu 1.

Phương trình hoành độ giao điểm:

\(\begin{align} & {{x}^{2}}=\left( 2a+1 \right)x-{{a}^{2}} \\ & \Leftrightarrow {{x}^{2}}-\left( 2a+1 \right)x+{{a}^{2}}=0 \\ & \Delta ={{\left[ -\left( 2a+1 \right) \right]}^{2}}-4.1.{{a}^{2}}=4a+1 \\ \end{align}\)

Để (d) cắt (P) tại 2 điểm phân biệt thì $\Delta >0\Rightarrow 4a+1>0\Rightarrow a>-\dfrac{1}{4}$

Theo hệ thức Vi – ét, ta có: \(\left\{ \begin{align} & {{x}_{1}}+{{x}_{2}}=2a+1\left( 1 \right) \\ & {{x}_{1}}{{x}_{2}}={{a}^{2}}\left( 2 \right) \\ \end{align} \right.\)

Theo đề bài, ta có: ${{x}_{1}}-4{{x}_{2}}=0\left( 3 \right)$

Kết hợp (1) và (3), ta được: \(\left\{ \begin{array}{l} {x_1} + {x_2} = 2a + 1\\ {x_1} - 4{x_2} = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {x_1} = \dfrac{{8a + 4}}{5}\\ {x_2} = \dfrac{{2a + 1}}{5} \end{array} \right.\left( * \right)\)

Thay (*) vào (2), ta được:

\(\begin{array}{l} \left( {\dfrac{{8a + 4}}{5}} \right).\left( {\dfrac{{2a + 1}}{5}} \right) = {a^2}\\ \Leftrightarrow \dfrac{{\left( {8a + 4} \right)\left( {2a + 1} \right)}}{{25}} = {a^2}\\ \Leftrightarrow 16{a^2} + 16a + 4 = 25{a^2}\\ \Leftrightarrow 9{a^2} - 16a - 4 = 0\\ \Leftrightarrow \left[ \begin{array}{l} a = 2\left( {tm} \right)\\ a = - \dfrac{2}{9}\left( {tm} \right) \end{array} \right. \end{array}\)

22 tháng 3 2020

cảm ơn nhiều ạ!