K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2023

loading... loading... 

8 tháng 5 2021

JKhGU0S_d.webp?maxwidth=760&fidelity=grand

1) Vì E là giao điểm của OD và AC; AD,DC là tiếp tuyến của (O)

\(\Rightarrow OD\perp AC\)tại E

\(\Rightarrow\widehat{CEO}=90^0\)

Lại có: CH vuông góc với AB \(\Rightarrow\widehat{CHO}=90^0\)

Xét tứ giác OECH có: \(\widehat{CEO}+\widehat{CHO}=180^0\)

Mà 2 góc này ở vị trí đối nhau trong tứ giác OECH

\(\Rightarrow OECH\)nội tiếp (dhnb )

2) \(2\widehat{BCF}+\widehat{BFC}=sđ\widebat{BC}+\frac{1}{2}\left(sđ\widebat{AC}-sđ\widebat{BC}\right)\)

\(=\frac{1}{2}\left(sđ\widebat{AC}+sđ\widebat{BC}\right)\)

\(=90^0\left(đpcm\right)\)

3)  Kẻ tiếp tuyến By của (O). By cắt DC tại P. Gọi K là giao điểm của BC và OP.

Ta có: AC // OP ( cùng vuông góc với BC )

Xét tam giác DOP có : EC // OP

\(\Rightarrow\frac{DE}{DO}=\frac{DC}{DP}\)(1)

Lại có: CH // BP ( cùng vuông góc với AB )

Xét tam giác DBP có: CM // BP

\(\Rightarrow\frac{DM}{DB}=\frac{DC}{DP}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{DE}{DO}=\frac{DM}{DB}\)

Xét tam giác DOB có \(\frac{DE}{DO}=\frac{DM}{DB}\left(cmt\right)\); E thuộc OD , M thuộc DB

\(\Rightarrow EM//OB\)ta let đảo

Hay EM // AB ( đpcm) 

a: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

b: MAOB nội tiếp

=>góc MAB=góc MBA=góc MOA

Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA/MD=MC/MA

=>MA^2=MD*MC

c: Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB

OH*OM+MC*MD

=OA^2+MA^2=OM^2

d: MH*MO=MC*MD

=>MH/MD=MC/MO

=>ΔMHC đồng dạng với ΔMDO

=>góc OHC+góc ODC=180 độ

=>OHCD nội tiếp