K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

OH là một phần đường kính

AB là dây

OH\(\perp\)AB

Do đó: H là trung điểm của AB

Xét ΔOAM vuông tại A có AH là đường cao

nên \(MA^2=MH\cdot MO\)

b: Xét ΔMAB có 

MH là đường cao

MH là đường trung tuyến

Do đó: ΔMAB cân tại M

Xét (O) có

ΔCAB nội tiếp

CB là đường kính

Do đó: ΔCAB vuông tại A

Xét tứ giác HAEM có 

\(\widehat{HAE}=\widehat{AHM}=\widehat{HME}=90^0\)

Do đó: HAEM là hình chữ nhật

Suy ra: HA=EM và HA//EM

=>HB=EM và HB//EM

=>HBME là hình bình hành

Suy ra: EB đi qua trung điểm của MH

 

16 tháng 12 2018

Bạn viết đề kiểu gì có chỗ mik ko hiểu nó có nghĩa là gì luôn !

Ai thấy đúng cho 1 k đúng

Ai thấy sai thì thông cảm đừng ném đá !

9 tháng 8 2015

Tóm tắt thôi nhé

a) Các cạnh // => Hình bình hành

T/g OBE = t/g OCD (^B=^C=90*, OB=OC, ^BOE=^COD vì cùng phụ với EOD) => OE = OD (2 cạnh kề) => Hình thoi

b) Nối OO' => 2 tam giác cân cùng góc đáy => so le trong => //

c) 1] OO' là đường trung trực của AB => đường trung bình

2] CB//OO'

Cm tương tự 1] để được BD//OO' => Ơ-clit => thẳng hàng