Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x C A O B K y D
Gọi K là giao điểm của CO và BD
Xét \(\Delta\)AOC và \(\Delta\)BOK có :
AO = BO(gt)
\(\widehat{OAC}=\widehat{OBK}\left(=90^0\right)\)
\(\widehat{O}\)chung
=> \(\Delta\)AOC = \(\Delta\)BOK(g.c.g)
=> OC = OK(hai cạnh tương ứng)
AC = BK(hai cạnh tương ứng)
Xét \(\Delta\)COD và \(\Delta\)KOD có :
CO = KO(gt)
\(\widehat{OCD}=\widehat{OKD}\left(=90^0\right)\)
OD cạnh chung
=> \(\Delta\)COD = \(\Delta\)KOD(c.g.c)
=> CD = KD(hai cạnh tương ứng)
Do đó : CD = DB + BK = DB + AC
*Độc giả tự vẽ hình, người giải ko biết cách đăng hình:))*
Gọi giao điểm của CO và BD là Z
Xét 2 tam giác vuông AOC và BOZ có:
OA=OB (O là trung điểm AB)
Góc AOC = góc BOZ (đối đỉnh)
Suy ra: tam giác AOC = tam giác BOZ (cgv-gn)
Do đó: AC=BZ và OC=OZ (các cặp cạnh tương ứng)
Vì OC=OZ nên O là trung điểm CZ => OD là đường trung tuyến tam giác DCZ (1)
Vì OD vuông góc OC nên OD là đường cao tam giác DCZ (2)
Từ (1) và (2) suy ra: tam giác DCZ cân tại D (có OD vừa là đường cao vừa là đường trung tuyến) => CD=DZ (3)
Mặt khác: DZ=BD+BZ
Mà: AC=BZ (cmt)
Nên: DZ=BD+AC (4)
Từ (3) và (4) suy ra: CD=BD+AC (đpcm)
CM tg OAC đồng dạng tg OBD ( g - g )
=> OA.OB = AC.BD
mà OA = OB
=> OA\(^2\)= AC.BD
tg OAC vuông tại A có :
OC2 = AC\(^2\)+ OA2
tg OBD vuông tại B có :
OD2 = BD2 + OB2
tg OBD vuông tại O có :
CD2 = OC2 + OD2 = AC\(^2\)+ OA2 + BD2 + OB2 = AC2 + 2OA2 + BD2
= AC2 + 2AC.BD + BD2
= ( AC + BD ) 2
=> CD = AC + BD
CHO TICK NHA !
Đáp án:em thưa cô em quên
nguyễn xuân hoạt nếu biết thì hãy trả lời đừng trả lời kiểu đó nhé :))