Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B O C D E y x
a) ta có AC vuông góc AB (gt)
BD vuông góc AB (gt)
=> AC//BC
Xét tam giác OAC và tam giác OBD ta có
OA=OB ( O là trung điểm AB)
góc OAC= góc OBD ( =90)
góc ACO= góc ODB (2 góc so le trong và AC// BD)
-> tam giac OAC = tam giác OBD (g-c-g)
-> OC= OD ( 2 cạnh tương ứng)
Xét tam giác OCE và tam giác ODE ta có
OE=OE ( canh chung)
CO=OD ( cmt)
góc COE= góc EOD (=90)
-> tam giac OCE= tam giac ODE (c-g-c)
c) ta có
ED=EB+BD
AC=BD ( tam giác OAC= tam giác OBD)
-> ED= BE+AC
mà CE= ED ( tam giác OCE = tam giác ODE)
nên CE = BE+AC
a, Xét △OAC vuông tại A và △OBD vuông tại B
Có: OA = OB (gt)
COA = DOB (2 góc đối đỉnh)
=> △OAC = △OBD (cgv-gnk)
b, Xét △OCE và △ODE cùng vuông tại O
Có: OE là cạnh chung
OC = OD (△OAC = △OBD)
=> △OCE = △ODE (2cgv)
c, Ta có: DE = BE + BD mà BD = AC (△OBD = △OAC) ; CE = DE (△OCE = △ODE)
=> CE = BE + AC (đpcm)
ý AC = 1/2 BC còn có điều kiện gì nữa ko??
a, xét tgACO và tgBEO có: gCAO=gEBO = 90 độ
OA=OB (O là trung điểm của AB)
gAOC = gBOE (hai góc đối đỉnh)
=>tgACO=tgEBO(g.c.g)=>AC=BE;OC=OE (hai cạnh tương ứng)
xét tgCOD và tgEOD có: OC=OE (cmt)
gCOD=gEOD=90độ
OD là cạnh chung
=>tgCOD=tgEOD (c.g.c)
=> CD= DE (hai cạnh tương ứng)
mà DE=DB+BE =>CD=DB+BE
mà BE=AC(cmt)=>CD=AC+BD
b, xét tgCOJ và tgEOJ có : OC=OE (cmt)
gCOJ=gEOJ = 90độ
OJ là cạnh chung
=>tgCOJ=tgEOJ (c.g.c)=>gJCO=gJEO;JC=JE
xét tgCDJ và tgEDJ có: CD=DE (cmt)
DJ là cạnh chung
CJ=EJ (cmt)
=>tgCDJ=tgEDJ (c.c.c)
=>gDCJ=gDEJ
mà gDCJ = gJCO (CJ là tia phân giác của gOCD)
gJCO=gJEO (cmt)
=>gDEJ = gJEO =>EJ là tia phân giác của gBEO
Hình bạn tự vẽ nha!
a) Vì \(Ax\perp AB\left(gt\right)\)
=> \(\widehat{OAC}=90^0.\)
Vì \(By\perp AB\left(gt\right)\)
=> \(\widehat{OBD}=90^0.\)
Xét 2 \(\Delta\) vuông \(OAC\) và \(OBD\) có:
\(\widehat{OAC}=\widehat{OBD}=90^0\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(\widehat{AOC}=\widehat{BOD}\) (vì 2 góc đối đỉnh)
=> \(\Delta OAC=\Delta OBD\) (cạnh góc vuông - góc nhọn kề).
Chúc bạn học tốt!