Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABD vuông tại A và ΔECD vuông tại E có
\(\widehat{ADB}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔABD\(\sim\)ΔECD(g-g)
b) Xét ΔABF có
K là trung điểm của AF(gt)
M là trung điểm của AB(gt)
Do đó: KM là đường trung bình của ΔABF(Định nghĩa đường trung bình của tam giác)
Suy ra: KM//BF(Định lí 2 về đường trung bình của tam giác)
mà BF\(\perp\)BC(gt)
nên KM\(\perp\)BC
Xét ΔCKB có
KM là đường cao ứng với cạnh BC(cmt)
BA là đường cao ứng với cạnh CK(gt)
KM cắt BA tại M(gt)
Do đó: M là trực tâm của ΔCKB(Tính chất ba đường cao của tam giác)
Suy ra: BK\(\perp\)CM
hay BK\(\perp\)OC(Đpcm)
A B C D E F M N
Gọi N là trung điểm của BD.
Xét \(\Delta\)ABC có: E là trung điểm AB; F là trung điểm BC => EF là đương trung bình trong \(\Delta\)ABC
=> EF // AC. Mà AC vuông góc BD. Nên EF vuông góc BD hay ND vuông góc EF (1)
Ta thấy: FN là đường trung bình \(\Delta\)BCD => FN // CD
Do EM vuông góc CD nên EM vuông góc FN. Tương tự, ta có: FM vuông góc EN
Xét \(\Delta\)ENF có: EM vuông góc FN; FM vuông góc EN => M là trực tâm \(\Delta\)ENF
=> NM vuông góc EF (2)
Từ (1) và (2) => 3 điểm D;N;M thẳng hàng. Lại có N là trung điểm BD => B;M;D thẳng hàng (đpcm).