Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đồ thị ta có T = 1,2s → \(\omega = \frac{{2\pi }}{T} = \frac{5}{3}\pi \) (rad/s)
a) Vận tốc cực đại của vật vmax = 0,3 cm/s= 0,003 m/s = ωA → A = 0.0006 (m)
b) Động năng cực đại của vật là Wđmax = = 2.10−6 (J)
c) Theo định luật bảo toàn cơ năng ta có Wtmax = Wđmax = 2.10−6 (J)
d) Độ cứng k của lò xo tính theo công thức: T = \(2\pi \sqrt {\frac{m}{k}} \) → k≈11N/m
a) Cơ năng bằng động năng cực đại:
\(W=W_{đmax}=80\left(mJ\right)=80\cdot10^{-3}\left(J\right)\)
b) Ta có:
\(W_{đmax}=80\cdot10^{-3}\left(J\right)\Rightarrow80\cdot10^{-3}\left(J\right)=\dfrac{1}{2}\cdot0,4\cdot v^2_{max}\)
\(\Rightarrow v_{max}=\sqrt{\dfrac{80\cdot10^{-3}}{\dfrac{1}{2}\cdot0,4}}=\dfrac{\sqrt{10}}{5}\left(m/s\right)\)
c) Khi li độ bằng 2 cm thì dựa vào đồ thị ta thấy động năng có giá trị là Wđ = 60 mJ.
Thế năng tại vị trí đó:
\(W_t=W-W_đ=80-60=20\left(mJ\right)=20\cdot10^{-3}\left(J\right)\)
a) Chu kì T = 100 ms = 0,1 s
b) Vận tốc có độ lớn cực đại: vmax = 3 m/s
c) Tần số góc: $\omega = \frac{2 \pi}{T} =\frac{2 \pi}{0.1} = 20 \pi (rad/s)$
Biên độ của dao động: $A=\frac{v_{max}}{\omega} =\frac{3}{20 \pi} \approx 0,048m$
Cơ năng của vật dao động:
$W=W_{dmax}=\frac{1}{2}mv^{2}_{max}\frac{1}{2}.0,15.3^{2}=0,675J$
d) Tại thời điểm 100 ms vận tốc bằng 0 và đang đi theo chiều âm nên vật có vị trí tại biên dương.
Khi đó gia tốc:
$a=-\omega ^{2}A=-(20 \pi)^{2}.0,048=-19,5 m/s^{2}$
a) Chu kì và tần số góc của con lắc.
Chu kì T = 1,2 s
Tần số góc là:
\(\omega=\dfrac{2\pi}{T}=\dfrac{2\pi}{1,2}=5,24\left(rad/s\right)\)
b) Vận tốc cực đại của vật.
Theo đồ thì biết biên độ A = 0,35
\(v_{max}=0,35\left(m/s\right)\)
c) Cơ năng của con lắc.
\(W=\dfrac{1}{2}mv_{max}^2=\dfrac{1}{2}\cdot0,2\cdot0,35^2=0,012\left(J\right)\)
d) Biên độ của vật.
\(A=\dfrac{v_{max}}{\omega}=\dfrac{0,35}{5,24}=0,067\left(m\right)\)