Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét tứ giác EAOM có \(\widehat{EAO}+\widehat{EMO}=90^0+90^0=180^0\)
nên AEMO là tứ giác nội tiếp
2: Xét tứ giác AQMP có \(\widehat{APM}=\widehat{AQM}=\widehat{PAQ}=90^0\)
nên AQMP là hình chữ nhật
=>AM cắt PQ tại trung điểm của mỗi đường
mà I là trung điểm của PQ
nên I là trung điểm của AM
=>I nằm trên đường trung trực của AM(1)
Xét (O) có
EA,EM là các tiếp tuyến
Do đó: EA=EM
=>E nằm trên đường trung trực của AM(2)
Ta có: OA=OM
=>O nằm trên đường trung trực của AM(3)
Từ (1),(2),(3) suy ra E,I,O thẳng hàng
Bài 1:
a,
OM là đường trung bình của tam giác BAC => OM = 1/2*BC
OM = 1/2*AB
=> AB=BC (đpcm).
b,
Tam giác ABC đều => BC = 2*r(O)
MN là đường trung bình của tam giác ABC => MN = 1/2*AB = r(O) = OM = OB =BN => BOMN là hình thoi.
a: góc EAO+góc EMO=180 độ
=>EAOM nội tiếp
b: góc AQM=góc APM=góc QAP=90 độ
=>AQMP là hcn
c: AQMP là hcn
=>AM cắt QP tại trung điểm của mỗi đường
=>I là trung điểm của AM
=>I nằm trên trung trực của AM
=>I,O,E thẳng hàng