Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A C B D E M N P
1)
- Xét tam giác EDC có :
+ PE = PD (GT)
+ NE = NC (GT)
=> PN là đường trung bình của tam giác EDC => \(PN=\frac{1}{2}CD\) (1)
-Xét tam giác EAC có:
+ NE = NC (GT )
+ ME = MA (GT )
=> NM là đường trung bình của tam giác EAC => \(MN=\frac{1}{2}AC\) (2)
- Xét tam giác EAD có :
+ ME = MA (GT)
+ PE =PD (GT )
=> MP là đường trung bình của tam giác EAD => \(MP=\frac{1}{2}AD\) (3)
-Từ 1 , 2 , 3 và AD = DC = CA (GT)
=> PN = NM = MP hay tam giác MNP đều
A B C D E M N P K
1) Vì P là trung điểm của DE ; N là trung điểm của EC => PN là đường trung bình của tam giác EDC
=> \(PN=\frac{1}{2}DC\)(1)
Vì M là trung điểm của AE ; N là trung điểm của EC => MN là đường trung bình của tam giác AEC
=> \(MN=\frac{1}{2}AC\) (2)
Vì P là trung điểm của DE ; M là trung điểm của AE => PM là đường trung bình của tam giác ADE
=> \(PM=\frac{1}{2}AD\)(3)
Mà \(\frac{1}{2}AD=\frac{1}{2}DC=\frac{1}{2}AC\) Nên từ (1) ; (2) \(\Rightarrow MN=NP=MP\) Hay tam MNP đều (đpcm)
2) Đang nghĩ
MQ // AC (đường TB của tam giác EAC)
NP // CB (đường TB của tam giác DCB)
=> MQ // NP (vì A, C, B thẳng hàng)
=> MNPQ là hình thang
Gọi L là trung điểm DE.
Ta có LN // CE (1) (đường trung bình của tam giác DCE).
Lại có: LM // DA (2) (đường TB tam giác EAD)
Mà: AD // CE (3) (Vì góc DAC = góc ECB = 60 độ, và 2 góc này đồng vị)
Từ (1), (2) , (3) suy ra M; N; L thẳng hàng
=> MN // AD
Mà MQ // AB (c/m trên)
góc NMQ = góc DAC = 60 độ
Tương tự c/m được góc PQM = 60 độ
=> hình thang MNPQ có 2 góc kề 1 đáy bằng nhau nên là hinh thang cân
Hơi dài đấy
MQ // AC (đường TB của tam giác EAC)
NP // CB (đường TB của tam giác DCB)
=> MQ // NP (vì A, C, B thẳng hàng)
=> MNPQ là hình thang
Gọi L là trung điểm DE.
Ta có LN // CE (1) (đường trung bình của tam giác DCE).
Lại có: LM // DA (2) (đường TB tam giác EAD)
Mà: AD // CE (3) (Vì góc DAC = góc ECB = 60 độ, và 2 góc này đồng vị)
Từ (1), (2) , (3) suy ra M; N; L thẳng hàng
=> MN // AD
Mà MQ // AB (c/m trên)
góc NMQ = góc DAC = 60 độ
Tương tự c/m được góc PQM = 60 độ
=> hình thang MNPQ có 2 góc kề 1 đáy bằng nhau nên là hinh thang cân
MQ // AC (đường TB của tam giác EAC)
NP // CB (đường TB của tam giác DCB)
=> MQ // NP (vì A, C, B thẳng hàng)
=> MNPQ là hình thang
Gọi L là trung điểm DE.
Ta có LN // CE (1) (đường trung bình của tam giác DCE).
Lại có: LM // DA (2) (đường TB tam giác EAD)
Mà: AD // CE (3) (Vì góc DAC = góc ECB = 60 độ, và 2 góc này đồng vị)
Từ (1), (2) , (3) suy ra M; N; L thẳng hàng
=> MN // AD
Mà MQ // AB (c/m trên)
góc NMQ = góc DAC = 60 độ
Tương tự c/m được góc PQM = 60 độ
=> hình thang MNPQ có 2 góc kề 1 đáy bằng nhau nên là hinh thang cân
b, MNPQ là hình thang cân nên MP = NQ , nhưng NQ = 1/2 DE do đó MP = 1/2 DE
xem thử bài này đúng chư mấy bạn