K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 1 2021

\(S_n=3^n-1\)

\(S=2011\left(u_1+...+u_{2010}\right)-\left(u_1+...+u_{2009}\right)-\left(u_1+...+u_{2008}\right)-...-u_1\)

\(=2011S_{2010}-\left(S_{2009}+S_{2008}+...+S_1\right)\)

\(=2011\left(3^{2010}-1\right)-\left(3^{2009}-1+3^{2008}-1+...+3^1-1\right)\)

\(=2011\left(3^{2010}-1\right)-\left(3.\dfrac{3^{2009}-1}{3-1}-2009\right)\)

\(=...\)

26 tháng 12 2019
https://i.imgur.com/BzNqi00.jpg
26 tháng 12 2019
https://i.imgur.com/PHFvoJD.jpg
NV
30 tháng 11 2018

Ta phân tích \(n^2=\dfrac{1}{3}\left(n+1\right)^3-\dfrac{1}{2}\left(n+1\right)^2+\dfrac{1}{6}\left(n+1\right)-\dfrac{1}{3}n^3+\dfrac{1}{2}n^2-\dfrac{1}{6}n\)

\(\Rightarrow u_{n+1}-\dfrac{1}{3}\left(n+1\right)^3+\dfrac{1}{2}\left(n+1\right)^2-\dfrac{1}{6}\left(n+1\right)=u_n-\dfrac{1}{3}n^3+\dfrac{1}{2}n^2-\dfrac{1}{6}n\)

Đặt \(v_n=u_n-\dfrac{1}{3}n^3+\dfrac{1}{2}n^2-\dfrac{1}{6}n\Rightarrow\left\{{}\begin{matrix}v_1=1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{6}=1\\v_{n+1}=v_n\end{matrix}\right.\)

Từ \(v_{n+1}=v_n\Rightarrow v_{n+1}=v_n=v_{n-1}=...=v_1=1\)

\(\Rightarrow u_n-\dfrac{1}{3}n^3+\dfrac{1}{2}n^2-\dfrac{1}{6}n=1\Rightarrow u_n=\dfrac{1}{3}n^3-\dfrac{1}{2}n^2+\dfrac{1}{6}n+1\)

\(\Rightarrow u_n=1+\dfrac{2n^3-3n^2+n}{6}=1+\dfrac{n\left(n-1\right)\left(2n-1\right)}{6}\)

8 tháng 1 2018

\(u_2=u_1+1^2=1+1^2=1+\dfrac{1\cdot2\cdot3}{6}\\ u_3=u_2+2^2=1+1^2+2^2=1+\dfrac{2\cdot3\cdot5}{6}\\ u_4=u_3+3^2=1+1^2+2^2+3^2=1+\dfrac{3\cdot4\cdot7}{6}\\ ...\\ \Rightarrow u_n=1+\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)

Đúng k nhỉ?

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

9 tháng 4 2017

a) Năm số hạng đầu của dãy số là 3, √10, √11, √12, √13.

b) Ta có: u1 = 3 = √9 = √(1 + 8)

u2 = √10 = √(2 + 8)

u3 = √11 = √(3 + 8)

u4 = √12 = √(4 + 8)

...........

Từ trên ta dự đoán un = √(n + 8), với n ε N* (1)

Chứng minh công thức (1) bằng phương pháp quy nạp:

- Với n = 1, rõ ràng công thức (1) là đúng.

- Giả sử (1) đúng với n = k ≥ 1, tức là có uk = √(k + 8) với k ≥ 1.

Theo công thức dãy số, ta có:

uk+1 = .

Như vậy công thức (1) đúng với n = k + 1.


9 tháng 4 2017

a) Năm số hạng đầu của dãy số là 3, √10, √11, √12, √13.

b) Ta có: u1 = 3 = √9 = √(1 + 8)

u2 = √10 = √(2 + 8)

u3 = √11 = √(3 + 8)

u4 = √12 = √(4 + 8)

...........

Từ trên ta dự đoán un = √(n + 8), với n ε N* (1)

Chứng minh công thức (1) bằng phương pháp quy nạp:

- Với n = 1, rõ ràng công thức (1) là đúng.

- Giả sử (1) đúng với n = k ≥ 1, tức là có uk = √(k + 8) với k ≥ 1.

Theo công thức dãy số, ta có:

uk+1 = .

Như vậy công thức (1) đúng với n = k + 1.


1 tháng 12 2023

9 tháng 4 2017

a) Ta có:

u1 = 2, u2 = 2u1 – 1 = 3, u3 = 2u2 – 1= 5

u4 = 2u3 -1 = 9, u5 = 2u4 – 1= 10

b) Với n = 1, ta có: u1 = 21-1 + 1 = 2 : đúng

Giả sử công thức đúng với n = k. Nghĩa là: uk = 2k-1 + 1

Ta chứng minh công thức cũng đúng với n = k + 1,

Nghĩa là chứng minh:

Uk+1 = 2(k+1)-1 + 1 = 2k + 1

Ta có: uk+ 1 = 2uk – 1 = 2(2k -1+ 1) -1 = 2.2k -1 + 2 – 1 = 2k + 1 (đpcm)

Vậy un = 2n-1 + 1 với mọi n ∈ N*



Tham khảo:

undefined