K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2017

A B C D M

a) Xét tam giác ABC và tam giác ABD cùng vuông tại A, ta có :

BA là cạnh chung

DA=AC ( Giả thiết )

=> Tam giác ABC = Tam giác ABD ( Cạnh vuông-cạnh vuông )

b) Xem lại đề.

a: Xét ΔABC vuông tại A và ΔABD vuông tại A có

AB chung

AC=AD

Do đó: ΔABC=ΔABD

b: Xét ΔMDC có

MA là đường cao

MA là đường trung tuyến

Do đó:ΔMDC cân tại M

Xét ΔMBD và ΔMBC có 

MB chung

BD=BC

MD=MC

Do đó: ΔMBD=ΔMBC

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC...
Đọc tiếp

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.
Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.
Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).
Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC và AM ⊥ BC.
Bài 9: Cho ΔABC, trên nửa mặt phẳng bờ AC không chứa điểm B, lấy điểm D sao cho AD // BC và AD = BC. Chứng minh: a) ΔABC = ΔCDA. b) AB // CD và ΔABD = ΔCDB.
Bài 10: Cho ΔABC có ∠A = 90 độ, trên cạnh BC lấy điểm E sao cho BA = BE. Tia phân giác ∠B cắt AC ở D.
a) Chứng minh: ΔABD = ΔEBD. b) Chứng minh: DA = DE. c) Tính số đo ∠BED.
Bài 11: Cho ΔABD, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a) ΔABM = ΔECM. b) AB = CE và  AC // BE.
(* Chú ý: Δ là tam giác, ∠ là góc, ⊥ là vuông góc, // là song song.)

0

a: Xet ΔBAC vuông tại A và ΔBAD vuông tại A có

BA chung

AC=AD

=>ΔBAC=ΔBAD

=>BC=BD

=>ΔBCD cân tại B

b: Xét ΔBDC có BM/BD=BN/BC

nên MN//CD

 

a: Xet ΔBAC vuông tại A và ΔBAD vuông tại A có

BA chung

AC=AD

=>ΔBAC=ΔBAD

=>BC=BD

=>ΔBCD cân tại B

b: Xét ΔBDC có BM/BD=BN/BC

nên MN//CD

a: Xét ΔABC vuông tại A và ΔADC vuông tại A có 

AB=AD

AC chung

Do đó: ΔABC=ΔADC

b: Xét tứ giác BCDE có 

A là trung điểm của BD

A là trung điểm của CE

Do đó: BCDE là hình bình hành

Suy ra: BC//DE

a: \(\widehat{ACB}=30^0\)

b: Xét ΔABD vuông tại A và ΔABC vuông tại A có

AD=AC

AB chung

Do đó: ΔABD=ΔABC

2 tháng 5 2022

a ). Vì góc BAE = 90 độ = > góc BAD = 90 độ (kề bù)

=> t/g ABD và t/g ABE là t/g vuông

Xét 2 t/g vuông ABD và vuông ABE có:

BA cạnh chung

AD = AE (gt) 

do đó : t/g ABD = t/g ABE ( cạnh góc vuông - cạnh góc vuông ).

=> BD = BE ( 2 cạnh tương ứng ) (1)

góc BDA = góc BED ( 2 góc tương ứng ( 2)

Từ (1) và (2) suy ra t/g BDE là t/g đều.

b ) Giả thiết góc BCA = góc ABE (3)

Ta có : EB = EC => t/g BEC cân tại E

=> góc EBC = góc ECB (4)

Từ (3) và (4) suy ra : góc ABE = góc CBE 

=> B là đường phân giác góc ABC hay B là phân giác của ABC.

c ) kẻ EK vuông BC tại K

ta có : góc BKE = 90 độ 

mà DB // EK (gt)

=> góc DBC = 90 độ ( đồng vị  với góc BKE)

=> BD vuông góc BC

d ) Xét 2 t/g vuông KEB và t/g vuông KEC có :

 EB = EC (gt)

góc EBK = góc ECK ( cmt )

do đó : t/g KEB = t/g KEC ( cạnh huyền - góc nhọn).

=> KB = KC ( 2 cạnh tương ứng ).

e ) Xét thấy t/g có đường cao FK vuông góc BC (5)

đường cao CA vuông góc BF (6)

Cả 2 đường cao đều cắt nhau tại E 

=> E là trực tâm của t/g FBC 

=> BE là đường cao thứ 3 của t/g FBC đi qua điểm E và cắt 2 đường cao (5) và (6)

=> BE vuông góc CF 

( hình em tự vẽ nhé ) .