K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2016

Bạn tự vẽ hình nhaleu

a.

Xét tam giác ABI và tam giác EBI có:

AIB = EIB ( = 900)

BI là cạnh chung

IBA = IBE (BI là tia phân giác của ABE)

=> Tam giác ABI = Tam giác EBI (g.c.g)

=> AB = EB (2 cạnh tương ứng)

b.

Xét tam giác ABD và tam giác EBD có:

BA = BE (theo câu a)

ABD = EBD (BD là tia phân giác của ABE)

BD là cạnh chung

=> Tam giác ABD = Tam giác EBD (c.g.c)

=> BAD = BED (2 góc tương ứng)

mà BAD = 900

=> BED = 900

=> Tam giác BED vuông tại E

c.

BA = BE (theo câu a)

=> Tam giác BAE cân tại B

=> \(BAE=\frac{180^0-ABE}{2}\) (1)

Xét tam giác ADF và tam giác EDC có:

ADF = EDC (2 góc đối đỉnh)

AD = ED (tam giác ABD = tam giác EBD)

FAD = CED ( = 900)

=> Tam giác ADF = Tam giác EDC (g.c.g)

Ta có:

BF = BA + AF

BC = BE + EC

mà BA = BE (theo câu a)

      AF = EC (tam giác ADF = tam giác EDC)

=> BF = BC

=> Tam giác BFC cân tại B

=> \(BFC=\frac{180^0-FBC}{2}\) (2)

Từ (1) và (2)

=> BAE = BFC

mà 2 góc này ở vị trí đồng vị

=> AE // FC

Chúc bạn học tốtok

6 tháng 1 2017

A B C F D I E

8 tháng 4 2019

Bạn có cần gấp không Nếu chưa cần thì mai mình gửi cho

7/3+11/3^2+15/3^3........2019/3^304

a: Xét ΔBAE và ΔBDE có

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔBAE=ΔBDE

b: Xét ΔBFC có

BH là đường cao

BH là đường phân giác
Do đó: ΔBFC cân tại B

=>BF=BC

c: Xét ΔBDF và ΔBAC có

BD=BA

\(\widehat{DBF}\) chung
BF=BC

Do đó: ΔBDF=ΔBAC

=>DF=AC

Ta có: AE+EC=AC

DE+EF=DF

mà AE=DE(ΔBAE=ΔBDE)

và AC=DF

nên EC=EF

Ta có: ΔBAE=ΔBDE

=>\(\widehat{BAE}=\widehat{BDE}\)

=>\(\widehat{BDE}=90^0\)

=>DE\(\perp\)BC

Xét ΔEAF vuông tại A và ΔEDC vuông tại E có

EA=ED

EF=EC

Do đó: ΔEAF=ΔEDC

=>\(\widehat{AEF}=\widehat{DEC}\)

mà \(\widehat{DEC}+\widehat{DEA}=180^0\)(hai góc kề bù)

nên \(\widehat{DEA}+\widehat{AEF}=180^0\)

=>D,E,F thẳng hàng

18 tháng 2 2017

TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ

\(AB^2+BC^2=AC^2\)

=>\(8^2+15^2=289=>AC^{ }=17\)

=>AC=17 CM

A B C E

17 tháng 5 2018