Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A có cos B=AB/BC
nên AB=3cm
=>AC=3 căn 3(cm)
b: \(HB=\dfrac{AB^2}{BC}=\dfrac{3^2}{6}=1.5\left(cm\right)\)
HC=6-1,5=4,5cm
a: Xét ΔABC vuông tại A có \(cosB=\dfrac{BA}{BC}\)
=>\(\dfrac{BA}{6}=cos60=\dfrac{1}{2}\)
=>BA=3(cm)
ΔACB vuông tại A
=>\(BA^2+AC^2=BC^2\)
=>\(AC^2+3^2=6^2\)
=>\(AC^2=27\)
=>\(AC=3\sqrt{3}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(CH\cdot CB=CA^2\)
=>\(CH\cdot6=27\)
=>CH=4,5(cm)
b: Sửa đề: \(\dfrac{1}{KD\cdot KC}=\dfrac{1}{AD^2}+\dfrac{1}{AC^2}\)
Xét ΔACD vuông tại A có AK là đường cao
nên \(AK^2=KD\cdot KC\)
Xét ΔACD vuông tại A có AK là đường cao
nên \(\dfrac{1}{AK^2}=\dfrac{1}{AD^2}+\dfrac{1}{AC^2}\)
=>\(\dfrac{1}{KD\cdot KC}=\dfrac{1}{AD^2}+\dfrac{1}{AC^2}\)
c: \(\widehat{ABC}+\widehat{CBD}=180^0\)(hai góc kề bù)
=>\(\widehat{CBD}+60^0=180^0\)
=>\(\widehat{CBD}=120^0\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}=90^0-60^0=30^0\)
Xét ΔDBC có BD=BC
nên ΔBDC cân tại B
=>\(\widehat{BDC}=\widehat{BCD}=\dfrac{180^0-\widehat{DBC}}{2}=30^0\)
Xét ΔACB vuông tại A và ΔADC vuông tại A có
\(\widehat{ACB}=\widehat{ADC}\)
Do đó:ΔACB đồng dạng với ΔADC
=>\(\dfrac{BC}{CD}=\dfrac{AC}{AD}\)
=>\(\dfrac{BC}{AC}=\dfrac{CD}{AD}\)
mà BC=BD
nên \(\dfrac{BD}{AC}=\dfrac{CD}{AD}\)
=>\(\dfrac{BD}{CD}=\dfrac{AC}{AD}=tanD\)
1: CH=9cm
\(AH=\sqrt{4\cdot9}=6\left(cm\right)\)
2: Xét ΔCHD vuông tại H và ΔCKB vuông tại K có
góc C chung
Do đó: ΔCHD đồng dạng với ΔCKB
Suy ra: CH/CK=CD/CB
=>\(CK\cdot CD=CH\cdot CB=CA^2\)
Câu 1:
a: \(\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot CB}{CH\cdot CB}=\dfrac{BH}{CH}\)
b: \(BD\cdot CE\cdot BC\)
\(=\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\cdot BC\)
\(=AH^4\cdot\dfrac{BC}{AB\cdot AC}=\dfrac{AH^4}{AH}=AH^3\)
a: Xét ΔABC vuông tại A có cos B=AB/BC
=>AB/BC=1/2
=>AB=3cm
=>AC=3 căn 3(cm)
b: \(HB=\dfrac{AB^2}{BC}=1.5\left(cm\right)\)
HC=6-1,5=4,5(cm)