K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2015

Xét tam giác AMB và tam giác DMC có:AM=MD(GT)

                                                         góc AMB=góc DMC(Đối đỉnh)

                                                         BM=MC(GT)

=>tam giác AMB=tam giác DMC(c.g.c)

9 tháng 8 2016

bạn tự vẽ hình nha

áp dụng địng lí py ta go vào tam giác ABC vuông ở A

=> \(BC^2=AB^2+AC^2\)

               =\(6^2+8^2\)

               =36+64

               =100

     => BC=10cm

a) ta có định lí: trong 1 tam giác vuông đường trung tuyến ứng với cạnh huyền thì = nửa cạnh huyền

=> AM=\(\frac{BC}{2}\)=\(\frac{10}{2}\)=5 cm

b)xét 2 tam giác AMB và DMC có:

AM =MD(gt)

BM=CM(AM là trung tuyến)

góc AMB=góc DMC(đối đỉnh)

=> 2 tam giác AMB=DMC(c.g.c)

c) 

cì AM =\(\frac{BC}{2}=BM=CM\)

mà AM =DM(gt)

=> AM+DM=BM+CM hay AD=BC

2 tam giác ABM=DMC(theo b)

=> AB=DC(2 cạnh tương ứng) 

xét 2 tam giác ABC và CDA có: 

AB =DC(chứng minh trên )

AD =BC(chứng minh trên)

cạnh AC chung

=> 2 tam giác ABC =CDA(c.c.c)

=> 2góc BAC=DCA=90độ(2 góc tương ứng)

hay AC vuông góc với DC


 

5 tháng 4 2020

Xét ΔDCM và ΔABM có:

AM = MD ( GT )

BM = BC (AM là đường trung tuyến của ΔABC tại đỉnh A)

góc BMA = góc DMC ( hai góc đối đỉnh)

=> ΔDMC = Δ ABM (c.g.c)

=> Góc BAM = Góc MDC ( hai góc tương ứng)

mà Góc BAM và Góc MDC  nằm ở vị trí so le trong

=> AB\\CD

b) xét ΔAKM và Δ DFM có

góc KMA = góc DMF ( 2 góc đối đỉnh)

góc BAM = góc MDC (cmt)

AM = MD ( GT )

=> ΔAKM = ΔDFM (g.c.g)

=> MK = MF ( 2 cạnh tương ứng)

=> M là trung điểm của KF

Học tốt

26 tháng 2 2020

A B C H D

Xét tam giác ABC có góc B > góc C suy ra AC > AB

Xét tam giác vuông ABH và tam giác vuông ACH

chung AH

có AC > AB (CMT)

suy ra HC > HB

c) Vì HC > HB (CMT)

Xét tam giác vuông BHD và tam giác vuông CHD

Có chung DH , BC >HB nên DC >DB

Xét tam giác BDC có DC > DB nên góc DBC > góc DCB

26 tháng 2 2020

Bài 16: 

A B C M D

Xét tam giác ABM và tam giác DCM

có AM=DM (GT)

góc AMB=góc DMC (đối đỉnh)

BM=MC (GT)

suy ra tam giác ABM=tam giác DCM (c.g.c)   (1)

b) Từ (1) suy ra góc MAB = góc MDC (hai góc tuơng ứng)

mà  góc MAB so le trong  góc MDC

suy ra AB // CD 

c) Từ (1) suy ra AB = CD

Xét tam giác ACD có AC + CD > AD

mà AD=2AM, AB=CD (CMT)

suy ra AC +AB >2AM

Bài 2

Bài làm

a) Xét tam giác ABM và tam giác DCM có:

BM = MC ( Do M là trung điểm BC )

^AMB = ^DMC ( hai góc đối )

MD = MA ( gt )

=> Tam giác ABM = tam giác DCM ( c.g.c )

b) Xét tam giác BHA và tam giác BHE có:

HE = HA ( Do H là trung điểm AE )

^BHA = ^BHE ( = 90o )

BH chung

=> Tam giác BHA = tam giác BHE ( c.g.c ) 

=> AB = BE

Mà tam giác ABM = tam giác DCM ( cmt )

=> AB = CD 

=> BE = CD ( đpcm )

Bài 3

Bài làm

a) Xét tam giác ABD và tam giác ACD có: 

AB = AB ( gt )

BD = DC ( Do M là trung điểm BC )

AD chung

=> Tam giác ABD = tam giác ACD ( c.c.c )

b) Xét tam giác BEC và tam giác MEA có:

AE = EC ( Do E kà trung điểm AC )

^BEC = ^MEA ( hai góc đối )

BE = EM ( gt )

=> Tam giác BEC = tam giác MEA ( c.g.c )

=> BC = AM

Mà BD = 1/2 . BC ( Do D là trung điểm BC )

hay BD = 1/2 . AM

Hay AM = 2.BD ( đpcm )

c) Vì tam giác ABD = tam giác ACD ( cmt )

=> ^ADB = ^ADC ( hai góc tương ứng )

Mà ^ADB + ^ADC = 180o ( hai góc kề bù )

=> ^ADB = ^ADC = 180o/2 = 90o 

=> AD vuông góc với BC                         (1)

Vì tam giác BEC = tam giác MEA ( cmt )

=> ^EBC = ^EMA ( hai góc tương ứng )

Mà hai góc này ở vị trí so le trong

=> AM // BC                              (2)

Từ (1) và (2) => AM vuông góc với AD 

=> ^MAD = 90o 

# Học tốt #

30 tháng 3 2020

E B A C M D O

a) Xét tam giác CMA và tam giác BMD có : 

\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)

=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)

=> ACBD là hình bình hành 

=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm 

b) Xét tam giác ABC và tam giác CDA có : 

\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)  

        Chung AC 

=> AD=BC

=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm 

c) Xét tam giác ABC có : 

M là trung điểm BC 

A là trung điểm CE 

Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm ) 

e) AM //BE => AD // BE 

Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B 

=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)

Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm 

=> E,O , D thẳng hàng => đpcm 

16 tháng 2 2020

Bài này mọi người đăng suốt mà >: vào câu hỏi tương tụ cũng có bài y hệt -.-

a Xét tam giác AMB và tam giác DMC 

AM=DM (gt)

BM=CM (gt)

AMB^=DMC^ (đối đỉnh)

=>tam giác AMB = tam giác DMC (c-g-c)

=>ABM^=DMC^ (hai góc tương ứng)

b, Theo câu a ta có : ABM^=DMC^

Do 2 góc này ở vị trí sole trong và bằng nhau

=>AB//DC 

C,Xét tam giác ABM và tam giác ACM 

AB = AC (gt)

AM cạnh chung

BM=CM (gt)

=>Tam giác ABM = tam giác ACM (c-c-c)

=>AMB^=AMC^

Do AMB^+AMC^=180*

=> AMB^=AMC^=180*/2=90* (đpcm)