Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
góc AEB=góc ADB=90 độ
=>AEDB nội tiếp
b: góc ACK=góc ABK=1/2*sđ cung AK=90 độ
Xét ΔACK vuông tại C và ΔADB vuông tại D có
góc AKC=góc ABD
=>ΔACK đồng dạng với ΔADB
=>AC/AD=AK/AB
=>AC*AB=AD*AK=AD*2R
a) Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Tâm I của đường tròn ngoại tiếp tứ giác BFEC là trung điểm của BC
b) Xét ΔSFB và ΔSCE có
\(\widehat{FSB}\) chung
\(\widehat{SFB}=\widehat{SCE}\left(=180^0-\widehat{BFE}\right)\)
Do đó: ΔSFB∼ΔSCE(g-g)
Suy ra: \(\dfrac{SF}{SC}=\dfrac{SB}{SE}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(SE\cdot SF=SB\cdot SC\)(đpcm)
Lời giải:
Kẻ tiếp tuyến $Ax$ của đường tròn $(O)$. Khi đó \(Ax\perp OA(*)\)
Xét tứ giác $EFBC$ có \(\widehat{BEC}=\widehat{CFB}(=90^0)\) và cùng nhìn cạnh $BC$ nên $EFBC$ là tứ giác nội tiếp
\(\Rightarrow \widehat{ECB}=\widehat{AFE}(1)\)
Mặt khác:
\(\widehat{ECB}=\widehat{ACB}=\widehat{xAB}(2)\) (góc tạo bởi một dây cung và tiếp tuyến thì bằng góc nội tiếp chắn cung đó, cụ thể đây là cung $AB$)
Từ \((1);(2)\Rightarrow \widehat{AFE}=\widehat{xAB}\). Mà hai góc này ở vị trí so le trong nên \(Ax\parallel EF(**)\)
Từ \((*); (**)\Rightarrow OA\perp EF\)
Ta có đpcm.
Hình vẽ: