Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ban tu ve hinh nha
Ta có : Góc DAB = góc CAE = 90 độ => góc DAB + góc BAC = góc CAE + góc BAc
hay góc DAC = góc EAB
Xét tam giác ADC và tam giác ABE có :
AD = AB ; AC = AE ; góc DAC = góc EAB
=> tam giác ADC = tam giác ABE => DC = BE
Vì tam giác ADC = tam giác ABE nên góc AEB = góc ACD
mà góc AKE = góc BKC (đối đỉnh) , góc AKE + góc AEB = 90 độ
=> góc BKC + góc AEB = 90 độ hay góc BKC + góc ACD = 90 độ
=> góc DC vuông góc BE
Giải:
Hai tam giác vuông BID và BIE có:
BI là cạnh chung
=(gt)
nên ∆BID=∆BIE.
(cạnh huyền - góc nhọn)
Suy ra ID=IE (1)
Tương tự ∆CIE=CIF(cạnh huyền góc nhọn).
Suy ra: IE =IF (2)
Từ (1)(2) suy ra: ID=IE=IF
Xét tam giác ABC và tam giác DCB có:
góc B1= góc C2 ( vì AB//CD)
BC: chung
Góc C1= góc B2 ( vì AC//BD)
=> tam giác ABC= tam giác DCB (g.c.g)
=> AB=CD
Câu5.Ta có hình vẽ
Chứng minh: a)Gọi E là trung điểm CD trong tam giác BCD có ME là đường trung bình => ME//BD
Trong tam giác MAE có I là trung điểm của cạnh AM (gt) mà ID//ME(gt) Nên D là trung điểm của AE => AD=DE (1)
Vì E là trung điểm của DC => DE=EC (2)
So sánh (1)và (2) => AD=DE=EC=> AC= 3AD
b)Trong tam giác MAE ,ID là đường trung bình (theo a) => ID=1/2ME (1)
Trong tam giác BCD; ME là Đường trung bình => ME=1/2BD (2)
So sánh (1) và (2) => ID =1/4 BD
Help me , please !Nguyễn Huy Thắng Trần Hương Thoan Trần Việt Linh Trương Hồng Hạnh Phạm Nguyễn Tất Đạt soyeon_Tiểubàng giải Yuuki Asuna Nguyễn Quốc Việt Nguyễn Thị Thu An Nguyễn Huy Tú Silver bullet Hoàng Lê Bảo Ngọc Phương An Võ Đông Anh Tuấn Lê Nguyên Hạo
A B C E D M I
Nối A với D
Xét \(\Delta\) ADM và \(\Delta\) CBM có:
MD = MB ( giả thiết )
AMD = CMB ( 2 góc đối đỉnh )
AM = CM ( M là trung điểm của AC )
=> \(\Delta\) ADM = \(\Delta\) CBM ( c . g . c )
=> DA = BC ( 2 cạnh tương ứng ) (1)
=> ADM = CBM ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong của 2 đoạn thẳng AD và BC cắt bởi BD
=> AD // BC
hay AD // BE
=> BAD = ABE ( 2 góc so le trong )
hay IAD = IBE (1)
=> ADE = BED ( 2 góc so le trong)
hay ADI = BEI (2)
Ta có: BE = BC ( theo giả thiết )
Mà DA = BC ( chứng minh (1) )
=> DA = BE (3)
Xét \(\Delta\) IAD và \(\Delta\) IBE có:
IAD = IBE ( chứng minh (1) )
DA = BE ( chứng minh (3) )
ADI = BEI ( chứng minh (2) )
=> \(\Delta\) IAD = \(\Delta\) IBE ( g . c . g )
=> IA = IB (2 cạnh tương ứng )
Vậy IA = IB ( đpcm )
Chuk bn hk tốt !