Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Xét \(\Delta CAM\) vuông tại M và \(\Delta CBN\) vuông tại N:
\(\widehat{C}chung.\)
\(AC=BC\) (\(\Delta ABC\) cân tại C).
\(\Rightarrow\) \(\Delta CAM=\) \(\Delta CBN\left(ch-gn\right).\)
Xét \(\Delta ABC\) cân tại C:
BN là đường cao \(\left(BN\perp AC\right).\)
AM là đường cao \(\left(AM\perp BC\right).\)
K là giao điểm của AM; BN (gt).
\(\Rightarrow\) K là trực tâm.
\(\Rightarrow\) CK là đường cao từ đỉnh C.
\(\Rightarrow\) CK là tia phân giác \(\widehat{ACB}\) (Tính chất tam giác cân).
2) \(\Delta CAM=\) \(\Delta CBN\left(cmt\right).\)
\(\Rightarrow CM=CN\) (2 cạnh tương ứng).
\(\Rightarrow\) \(\Delta CNM\) cân tại C.
\(\Rightarrow\) \(\widehat{CNM}=\dfrac{180^o-\widehat{C}}{2}.\)
Mà \(\widehat{CAB}=\dfrac{180^o-\widehat{C}}{2}\) (\(\Delta ABC\) cân tại C).
\(\Rightarrow\) \(\widehat{CNM}=\widehat{CAB}.\)
\(\Rightarrow MN//AB\left(dhnb\right).\)
3) Xét \(\Delta ABC\) cân tại C:
CD là đường cao (cmt).
\(\Rightarrow\) CD là đường trung tuyến (Tính chất tam giác cân).
\(\Rightarrow\) D là trung điểm của AB.
\(\Rightarrow\) \(AD=\dfrac{1}{2}AB=\dfrac{1}{2}10=5\left(cm\right).\)
Xét \(\Delta ACD\) vuông tại D:
\(AC^2=CD^2+AD^2\left(Pytago\right).\\ \Rightarrow12^2=CD^2+5^2.\\ \Rightarrow CD^2=119.\\ \Rightarrow CD=\sqrt{119}\left(cm\right).\)
1: Xét ΔCMA vuông tại M và ΔCNB vuông tại N có
CA=CB
\(\widehat{ACM}\) chung
Do đó: ΔCMA=ΔCNB
2: Xét ΔCAB có CN/CA=CM/CB
nên NM//BA
a,Ta có : ABC^+BAC^+BCA^=180* ( đl tổng 3 góc )
=> 90*+BAC^+30*=180*
=>BAC^=180*-120*=60*
Do AM là tia p/g của BAC^
=> BAM^=MAN^=60*/2=30*
Xét tam giác vuông ABM và tam giác vuông ANM
AM cạnh chung
BAM^=MAN^
=>tam giác ABM = tam giác ANM ( ch-gn )
=>AB=AN (2 cạnh tương ứng)
b,Xét tam giác vuông IBM và tam giác vuông CNM
BMI^=NMC^ ( đối đỉnh )
BM = NM ( cm câu a )
=> tam giác IBM = tam giác CNM ( cgv-gn )
c, Ta có : BMI^ + MBI^ + BIM ^ = 180*
=>BMI^ + 90* + 30* = 180*
=> BMI^=180*-120*=60*
Do BMI^=CMN^
=>BMI^=CMN^=60*
Lại có IMN^=180* ( góc bẹt )
Mà : IMC^+CMN^=180*
=>IMC^=180*-60*=120*
Mặt khác : IM=MC (cm câu b)
=> tam giác IMC cân tại M
=>MIC^=MCI^
dễ thấy : IMC^+MIC^+MCI^=180*
=>MIC^+MCi^=180*-120*=60*
do :MIC^=MCI^
=>MIC^=MCI^=60*/2=30*
Ta có :+)AIC^=BIM^+CIM^=30*+30*=60*
+)ACI^=NCM^+MCI^=30*+30*=60*
+)IAC^=60*
=>tam giác IAC là tam giác đều
1: Xét ΔCAM vuông tại M và ΔCBN vuông tại N có
CA=CB
\(\widehat{ACM}\) chung
Do đó: ΔCAM=ΔCBN
Suy ra: CM=CN; AM=BN
Xét ΔCNK vuông tại N và ΔCMK vuông tại M có
CN=CM
CK chung
Do đó: ΔCNK=ΔCMK
Suy ra: \(\widehat{NCK}=\widehat{MCK}\)
hay CK là tia phân giác của góc ACB
2: Xét ΔCAB có CN/CA=CM/CB
nên MN//AB
3: AB=10cm
nên AD=DB=5cm
\(CD=\sqrt{12^2-5^2}=\sqrt{119}\left(cm\right)\)