K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x+y-3=0

=>x+y=3

\(M\left(x\right)=x^3+x^2y-3x^2-xy-y^2+4y+x+2020\)

\(=x^2\left(x+y\right)-3x^2-y\left(x+y\right)+4y+x+2020\)

\(=3x^2-3x^2-3y+4y+x+2020\)

=x+y+2020

=3+2020

=2023

3 tháng 2 2018

a)   \(A=x^3-x^2y+3x^2-xy+y^2-4y+x+2\)

\(=\left(x^3-x^2y+3\right)-\left(xy-y^2+3y\right)+\left(x-y+3\right)-1\)

\(=x^2\left(x-y+3\right)-y\left(x-y+3\right)+\left(x-y+3\right)-1\)

\(=\left(x-y+3\right)\left(x^2-y+1\right)-1\)

\(=-1\)         (thay  x - y + 3 = 0)

30 tháng 5 2020

Ta có  M = x+ x2y - 2x2 - xy - y+3y + x + 2017

               = x2(x + y - 2) - y(x + y - 2) + x + y - 2 + 2019

thay x + y - 2 = 0 vào M ta có :  M = x2.0 - y.0 + 0 + 2019

                                                      = 2019

13 tháng 6 2020

\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)

\(=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)

\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)

\(=\left(x+y-2\right)\left(x^2-y+1\right)+2019\)

Thay \(x+y-2=0\)vào đa thức ta được:

\(M=0.\left(x^2-y+1\right)+2019=2019\)

13 tháng 5 2016

M=x^3+x^2.y-2x^2-xy-y^2+3y+x-1

=>  M=x^2﴾x+y‐2﴿‐﴾xy+y^2‐2y﴿+﴾y+x‐1﴿ = 0‐ y﴾x+y‐2﴿+1=1

N=x^3‐2x^2‐xy^2+2xy+2y+2x‐2

=> N= 2﴾x+y‐1﴿+x﴾x^2‐y^2﴿‐2x﴾x‐y﴿=2+x﴾x+y﴿﴾x‐y﴿‐2x﴾x‐y﴿=2+﴾x^2+xy‐2x﴿﴾x‐y﴿=2+x﴾x+y‐2﴿﴾x‐ y﴿=2+0=2﴾vì x+y‐2=0﴿ 

11 tháng 3 2018

1, 3x2.(-2y)3 = [3.(-2)](x2.y3) = -6x2y3

Hệ số: -6

phần biến: x2y3

bậc của đơn thức: 5

2,a, \(P=4x^4y^2+\frac{5}{6}+3x^3y^5-3x^4y^2+4y^3-\frac{1}{3}x^3y^5-x^4y^2\)

\(=\left(4x^4y^2-3x^4y^4-x^4y^4\right)+\left(3x^3y^5-\frac{1}{3}x^3y^5\right)+\frac{5}{6}+4y^3\)

\(=\frac{8}{3}x^3y^5+\frac{5}{6}+4y^3\)

b, bậc cua đa thức P là 8

c, Thay x = 2, y = 0,5 vào P ta được

\(P=\frac{8}{3}.2^3.\left(0,5\right)^5+\frac{5}{6}+4.\left(0,5\right)^3\)

\(=\frac{8}{3}.8.\frac{1}{32}+\frac{5}{6}+4.\frac{1}{8}\)

\(=\frac{2}{3}+\frac{5}{6}+\frac{1}{2}\)

\(=2\)

10 tháng 5 2017

\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2006\)

\(=\left(x^3+x^2y-2x^2\right)+\left(-xy-y^2+2y\right)+\left(y+x-2\right)+2008\)

\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2008\)

\(=\left(x+y-2\right)\left(x^2-y+1\right)+2008\)

\(=0.\left(x^2-y+1\right)+2008\)  

\(=2008\)

29 tháng 12 2017

Bạn kia làm đúng rồi 

k mik nha các bạn

Chúc các bạn học tốt^_^~~~

30 tháng 10 2019

Câu hỏi của Nguyễn Minh Trang - Toán lớp 7 - Học toán với OnlineMath

Tham khảo