Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có M = x3 + x2y - 2x2 - xy - y2 +3y + x + 2017
= x2(x + y - 2) - y(x + y - 2) + x + y - 2 + 2019
thay x + y - 2 = 0 vào M ta có : M = x2.0 - y.0 + 0 + 2019
= 2019
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)
\(=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)
\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)
\(=\left(x+y-2\right)\left(x^2-y+1\right)+2019\)
Thay \(x+y-2=0\)vào đa thức ta được:
\(M=0.\left(x^2-y+1\right)+2019=2019\)
1, 3x2.(-2y)3 = [3.(-2)](x2.y3) = -6x2y3
Hệ số: -6
phần biến: x2y3
bậc của đơn thức: 5
2,a, \(P=4x^4y^2+\frac{5}{6}+3x^3y^5-3x^4y^2+4y^3-\frac{1}{3}x^3y^5-x^4y^2\)
\(=\left(4x^4y^2-3x^4y^4-x^4y^4\right)+\left(3x^3y^5-\frac{1}{3}x^3y^5\right)+\frac{5}{6}+4y^3\)
\(=\frac{8}{3}x^3y^5+\frac{5}{6}+4y^3\)
b, bậc cua đa thức P là 8
c, Thay x = 2, y = 0,5 vào P ta được
\(P=\frac{8}{3}.2^3.\left(0,5\right)^5+\frac{5}{6}+4.\left(0,5\right)^3\)
\(=\frac{8}{3}.8.\frac{1}{32}+\frac{5}{6}+4.\frac{1}{8}\)
\(=\frac{2}{3}+\frac{5}{6}+\frac{1}{2}\)
\(=2\)
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2006\)
\(=\left(x^3+x^2y-2x^2\right)+\left(-xy-y^2+2y\right)+\left(y+x-2\right)+2008\)
\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2008\)
\(=\left(x+y-2\right)\left(x^2-y+1\right)+2008\)
\(=0.\left(x^2-y+1\right)+2008\)
\(=2008\)
Bạn kia làm đúng rồi
k mik nha các bạn
Chúc các bạn học tốt^_^~~~
x+y-3=0
=>x+y=3
\(M\left(x\right)=x^3+x^2y-3x^2-xy-y^2+4y+x+2020\)
\(=x^2\left(x+y\right)-3x^2-y\left(x+y\right)+4y+x+2020\)
\(=3x^2-3x^2-3y+4y+x+2020\)
=x+y+2020
=3+2020
=2023