K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2018

Xét đa thức Q(x) = P(x) - 10x ,ta có:

Q(1) = P(1) - 10 = 10 - 10 = 0

Q(2) = P(2) - 20 = 20 - 20 = 0

Q(3) = P(3) - 30 = 30 - 30 = 0

=> x = 1 ; x = 2 ; x = 3 là 3 nghiệm của đa thức Q(x), do đó \(Q\left(x\right)⋮\left(x-1\right)\left(x-2\right)\left(x-3\right)\).

=> Q(x) có dạng : 

Q(x) = (x - 1)(x - 2)(x - 3)(x - a)                       \(\left(a\inℚ\right)\)

Khi đó: P(x) = (x - 1)(x - 2)(x - 3)(x - a) + 10x

Ta có: P(12) = 11.10.9.(12 - a) + 120

           P(-8) = -9.(-10).(-11)(-8 - a) - 80

=> P(12) + P(-8) = 11.1019.(12 - a + 8 + a) + 40 

                           = 11.10.9.20 + 40  = 19840

Vậy P(12) + P(-8) = 19840

20 tháng 2 2018

cái này có trong nâng cao chuyên đề thì phải, nâng cao chuyên đề 8 ấy, e mở ra tham khảo nhá, t nhác vt 

hình như bài 98 thì phải phần đa thức ý

Nâng cao chuyên đề toán 8 đại nhé 

NV
12 tháng 3 2019

Có thể thay \(a;b;c;d\) vào giải hệ 4 ẩn:

\(\left\{{}\begin{matrix}1+a+b+c+d=7\\16+8a+4b+2c+d=10\\81+27a+9b+3c+d=13\\256+64a+16b+4c+d=16\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-10\\b=35\\c=-47\\d=28\end{matrix}\right.\)

// Hoặc 1 cách khác, nhận thấy với một vài giá trị x xác định \(P\left(x+1\right)=P\left(x\right)+3\Rightarrow\) ta tổng quát hóa được \(P\left(x\right)=3\left(x-1\right)+7\) ở một vài giá trị

\(\Rightarrow\) Đặt \(Q\left(x\right)=P\left(x\right)-\left[3\left(x-1\right)+7\right]\) thì ta có \(Q\left(1\right)=Q\left(2\right)=Q\left(3\right)=Q\left(4\right)=0\)

\(Q\left(x\right)\) bậc 4 \(\Rightarrow Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)

\(\Rightarrow P\left(x\right)=Q\left(x\right)+3\left(x-1\right)+7\)

\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+3\left(x-1\right)+7\)

Khai triển ra ta sẽ được các hệ số a, b, c, d

NV
12 tháng 3 2019

Bạn lấy lần lượt 3 pt dưới trừ pt đầu, sẽ khử được ẩn d

Sau đó ném vào casio bấm hệ 3 pt 3 ẩn thôi (vì mình ko xài 570VN, hình như 570VN xử được 4 pt 4 ẩn luôn, ko cần khử bớt 1 ẩn)

9 tháng 12 2019

Èo,phân tích ra tưởng cái hệ 3 ẩn r định bỏ cuộc và cái kết:(

Ta có:

\(f\left(x\right)=\left(x-2\right)\cdot Q\left(x\right)+5\)

\(f\left(x\right)=\left(x+1\right)\cdot K\left(x\right)-4\)

Theo định lý Huy ĐZ ta có:

\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\left(1\right)\)

\(\Rightarrow f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\left(2\right)\)

Lấy \(\left(1\right)-\left(2\right)\) ta được:

\(9+3a+3b=9\Leftrightarrow a+b=0\)

Khi đó:

\(\left(a^3+b^3\right)\left(b^5+c^5\right)\left(c^7+d^7\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)\left(b^5+c^5\right)\left(c^7+a^7\right)\) 

\(=0\) ( theo Huy ĐZ thì \(a+b=0\) )

9 tháng 12 2019

Ap dung dinh ly Bozout ta co

\(f\left(2\right)=2^3+a.2^2+b.2+c=5\)

<=> \(4a+2b+c=-3\) (1)

tuong tu \(f\left(-1\right)=\left(-1\right)^3+a-b+c=-4\)

<=> \(a-b+c=-3\) (2)

tu (1) va (2) => \(4a+2b=a-b=-3\) 

=> a=b+-3

=> \(4\left(b-3\right)+2b=-3\Rightarrow b=\frac{3}{2}\)

=> \(a=-\frac{3}{2}\)

=> \(\left(a^3+b^3\right)=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(\frac{3}{2}-\frac{3}{2}\right)\left(a^2-ab+b^2\right)=0\)

=> gia tri bieu thuc =0

2 tháng 8 2017

1. (3x - 5)2 - (3x + 1)2 = 8

=> (3x - 5 - 3x - 1)(3x - 5 + 3x + 1) = 8

=> -6(6x - 4) = 8

=> 6x - 4 = \(\dfrac{-4}{3}\)

\(\Rightarrow x=\dfrac{4}{9}\)

2) 2x(8x - 3) - (4x - 3)2 = 27

=> 16x2 - 6x - 16x2 + 24x - 9 = 27

=> 18x - 9 = 27

=> x = 2

3) (2x - 3)2 - (2x + 1)2 = 3

=> (2x - 3 - 2x - 1)(2x - 3 + 2x +1) = 3

=> -4(4x - 2) = 3

=> 4x - 2 = \(\dfrac{-3}{4}\)

\(\Rightarrow x=\dfrac{5}{16}\)

4) (x + 5)2 - x2 = 45

=> (x + 5 - x)(x + 5 + x) = 45

=> 5(2x + 5) = 45

=> 2x + 5 = 9

=> x = 2

5) (x - 3)3 - (x - 3)(x2 + 3x + 9) + 9(x + 1)2 = 18

=> x3 - 9x2 + 27x - 27 - x3 + 27 + 9(x2 + 2x + 1) = 18

=> -9x2 + 27x + 9x2 + 18x + 9 = 18

=> 45x + 9 = 18

=> 45x = 9

=> x = \(\dfrac{1}{5}\)

6) x(x - 4)(x + 4) - (x - 5)(x2 + 5x + 25) = 13

=> x (x2 - 16) - (x3 - 125) = 13

=> x3 - 16x - x3 + 125 = 13

=> -16x = -112

=> x = 7.

2 tháng 8 2017

Bạn ơi có chắc đúng ko đấy.

21 tháng 4 2019

Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )

Khi đó ta có pt :

\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)

\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)

Vì pt trên đúng với mọi x nên :

+) đặt \(x=1\)

\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)

\(\Leftrightarrow-7+a+b+c=0\)

\(\Leftrightarrow a+b+c=7\)(1)

Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :

\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)

Từ (1) và (2) ta có hệ pt 3 ẩn :

\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)

Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)

Vậy....

31 tháng 8 2017

a) \(A=\dfrac{\left(-2\right)^5}{\left(-2\right)^3}=\left(-2\right)^{5-3}=\left(-2\right)^2=4\)

b) \(y\ne0:B=\dfrac{\left(-y\right)^7}{\left(-y\right)^3}=\left(-y\right)^{7-3}=\left(-y\right)^4=y^4\)

c) \(x\ne0:C=\dfrac{\left(x\right)^{12}}{\left(-x\right)^{10}}=\left(x\right)^{12-10}=\left(x\right)^2=x^4\)

d) \(x\ne0:D=\dfrac{2x^6}{\left(2x\right)^3}=\dfrac{2x^6}{8x^3}=\dfrac{1}{4}\left(x\right)^{6-3}=\dfrac{1}{4}\left(x\right)^3\)

e) \(x\ne0:E=\dfrac{\left(-3x\right)^5}{\left(-3x\right)^2}=\left(-3x\right)^{5-2}=\left(-3x\right)^3=-27x^3\)

f) \(x,y\ne0:F=\dfrac{\left(xy^2\right)^4}{\left(xy^2\right)^2}=\left(xy^2\right)^{4-2}=\left(xy^2\right)^2=x^2y^4\)

i) \(x\ne-2:I=\dfrac{\left(x+2\right)^9}{\left(x+2\right)^6}=\left(x+2\right)^{9-6}=\left(x+2\right)^3\)

30 tháng 8 2017

A),(-2)5:(-2)3=(-2)2=4

B) (-y)7 :(-y)3=y4