K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2021

P(x)=\(ax^2+bx+c\) (1)(a\(\ne0\) )

Ta có : 

\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\)\(\Rightarrow\left\{{}\begin{matrix}b=2a\\c=3a\end{matrix}\right.\)(2)

Thay(2) vào (1)\(\Rightarrow P\left(x\right)=ax^2+2ax+3a\)

\(\Rightarrow\dfrac{P\left(-2\right)-3P\left(-1\right)}{a}=\dfrac{4a-4a+3a-3\left(a-2a+3a\right)}{a}\)=\(\dfrac{3a-3a+6a-9a}{a}=\dfrac{-3a}{a}=-3\)

28 tháng 3 2017

Bài 1:

Ta có:

\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}\)

\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{100-1}{100!}\)

\(=\dfrac{2}{2!}-\dfrac{1}{2!}+\dfrac{3}{3!}-\dfrac{1}{3!}+...+\dfrac{100}{100!}-\dfrac{1}{100!}\)

\(=\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+...+\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(=1-\dfrac{1}{100!}\)

\(1-\dfrac{1}{100!}< 1\)

Nên \(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}< 1\) (Đpcm)

Bài 2:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a+b-c=c\\b+c-a=a\\c+a-b=b\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)

Thay vào biểu thức ta có:

\(B=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\)

\(=\dfrac{a+b}{a}.\dfrac{c+a}{c}.\dfrac{b+c}{b}\)

\(=\dfrac{2a.2b.2c}{abc}\)

\(=\dfrac{8\left(abc\right)}{abc}=8\)

Vậy \(B=8\)

1 tháng 4 2017

bài 3:

Ta có a+2b+ac= -1/2

<=> 1/2+a+2b+ac=0
 

chia 2 vế cho 4 ta được: \(\frac{ }{12}\)(1/2)^3+a(1/2)^3+b(1/2)+c=0

<=> 1/8+a/4+b/2+c=0

<=> P(1/2)=0

Vậy x=1/2 là một nghiệm của đa thức\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

26 tháng 2 2018

Phương Ann Nhã Doanh đề bài khó wá Mashiro Shiina Đinh Đức Hùng

Nguyễn Huy Tú Lightning Farron Akai Haruma

a: \(=\dfrac{1}{3}\cdot24\cdot4\cdot x^2\cdot xy\cdot xy=32x^4y^2\)

Phần biến là \(x^4;y^2\)

Bậc là 6

Hệ số là 32

b: \(=xy^2\cdot\left(-2\right)xy^3=-2x^2y^5\)

Phần biến là \(x^2;y^5\)

Bậc là 7

Hệ số là -2

c: \(=\dfrac{1}{5}x^2y^3z\cdot\dfrac{1}{8}x^3y^3z^3=\dfrac{1}{40}x^5y^6z^4\)

PHần biến là \(x^5;y^6;z^4\)

Bậc là 15

Hệ só là 1/40

d: \(=\dfrac{1}{3}\cdot ab\cdot xy\cdot a^2\cdot x^2y^4=\dfrac{1}{3}a^3b\cdot x^3y^5\)

Phần biến là \(x^3y^5\)

Hệ số là \(\dfrac{1}{3}a^3b\)

Bậc là 8

30 tháng 5 2017

a)

\(\left(-\dfrac{1}{3}xy\right).\left(3x^2yz^2\right)=\left(-\dfrac{1}{3}.3\right).\left(x.x^2\right).\left(y.y\right).z^2=-x^3y^2z^2\), có hệ số là -1.

b)

\(-54y^2.bx=\left(-54.b\right).x.y^2=-54bxy^2\), có hệ số là -54b.

c)

\(-2x^2y.\left(-\dfrac{1}{2}\right)^2.x\left(y^2z\right)^3=-2x^2y.\left(\dfrac{1}{4}xy^6z^3\right)=\left(-2.\dfrac{1}{4}\right).\left(x^2x\right).\left(yy^6\right).z^3=-\dfrac{1}{2}x^3y^7z^3\), có hệ số là \(-\dfrac{1}{2}\).

6 tháng 5 2018

C1:Chương IV : Biểu thức đại số

6 tháng 5 2018

C2: Có sai sót j mong bn thông cảm! Viết hơi ẩu ☺Chương IV : Biểu thức đại số

14 tháng 12 2017

\(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)=\dfrac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)

Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)

Khi đó \(P=\dfrac{-abc}{abc}=-1\)

Với \(a+b+c\ne0\) ,áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\a+c=2b\end{matrix}\right.\)

Khi đó \(P=\dfrac{8abc}{abc}=8\)