K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

Ta có: 

\(P\left(1\right)=a+b+c+d+1\)

\(P\left(2\right)=8a+4b+2c+d+16\)

\(P\left(3\right)=27a+9b+3c+d+81\)

\(\Rightarrow100P\left(1\right)-198P\left(2\right)+100P\left(3\right)\)

\(=100\left(a+b+c+d+1\right)-198\left(8a+4b+2c+d+16\right)+100\left(27a+9b+3c+d+81\right)\)

\(=1216a+208b+4c+2d+5032=100.10-198.20+100.30=40\)

Ta lại có: 

\(f\left(12\right)+f\left(-8\right)=12^4+12^3a+12^2b+12c+d+8^4-8^3a+8^2b-8c+d\)

\(=\left(1216a+208b+4c+2d+5032\right)+19800\)

\(=40+19800=19840\)

\(\Rightarrow P=\frac{19840}{10}+25=2009\)

25 tháng 11 2019

Đặt \(G\left(x\right)=f\left(x\right)-10x\)\(\Leftrightarrow\hept{f\left(x\right)=G\left(x\right)+10x}\)và \(G\left(x\right)\)có bậc 4 có hệ số cao nhất là 1

Từ đề bài ta có: \(\hept{\begin{cases}G\left(1\right)=f\left(1\right)-10=0\\G\left(2\right)=f\left(2\right)-20=0\\G\left(3\right)=f\left(3\right)-30=0\end{cases}}\)\(\Rightarrow x=1;2;3\)là 3 nghiệm của\(G\left(x\right)\)

\(\Rightarrow G\left(x\right)\)có dạng \(G\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-k\right)\)

\(\Rightarrow\hept{\begin{cases}G\left(12\right)=\left(12-1\right)\left(12-2\right)\left(12-3\right)\left(12-k\right)=11880-990k\\G\left(-8\right)=\left(-8-1\right)\left(-8-2\right)\left(-8-3\right)\left(-8-k\right)=7920+990k\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}f\left(12\right)=G\left(12\right)+12\times10=12000-990k\\f\left(-8\right)=G\left(-8\right)+10\times\left(-8\right)=7840+990k\end{cases}}\)

\(\Rightarrow f\left(12\right)+f\left(-8\right)=12000-990k+7840+990k=19840\)

\(\Rightarrow P=\frac{19840}{10}+25=2009\)

4 tháng 3 2022

Đặt \(f\left(x\right)=10x\)

Khi đó ta có \(f\left(1\right)=10=P\left(1\right)\)\(f\left(2\right)=20=P\left(2\right)\)\(f\left(3\right)=30=P\left(3\right)\)

Do đó \(P\left(x\right)-f\left(x\right)=g\left(x\right).\left(x-1\right)\left(x-2\right)\left(x-3\right)\)

\(\Rightarrow P\left(x\right)=10+g\left(x\right).\left(x-1\right)\left(x-2\right)\left(x-3\right)\)

Vì \(P\left(x\right)\)là đa thức bậc 4 mà \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\)là đa thức bậc 3 nên \(g\left(x\right)\)là đa thức bậc 1 hay \(g\left(x\right)=x+n\)

Vậy \(P\left(x\right)=\left(x+n\right)\left(x-1\right)\left(x-2\right)\left(x-3\right)+10\)

\(\Rightarrow P\left(12\right)=\left(12+n\right)\left(12-1\right)\left(12-2\right)\left(12-3\right)=\left(n+12\right).11.10.9=990\left(n+12\right)\)

\(=990n+11880\)

Và \(P\left(-8\right)=\left(-8+n\right)\left(-8-1\right)\left(-8-2\right)\left(-8-3\right)=\left(n-8\right)\left(-9\right)\left(-10\right)\left(-11\right)\)\(=-990\left(n-8\right)=-990n+7920\)

Vậy \(\frac{P\left(12\right)+P\left(-8\right)}{10}+25=\frac{990n+11880-990n+7920}{10}+25=\frac{19800}{10}+25=2005\)

12 tháng 9 2017

Ta có \(f\left(1\right)+f\left(10\right)+f\left(100\right)=1+a+b+100+10a+b+10000+100a+b\)

\(=10101+111a+3b\)

Tương tự \(G\left(1\right)+G\left(10\right)+G\left(100\right)=10101+111m+3n\)

Từ đây ta có \(111a-3b=111m-3n\Rightarrow111\left(a-m\right)-3\left(b-n\right)=0\)

Xét \(h\left(x\right)=f\left(x\right)-G\left(x\right)\) , khi đó \(h\left(x_0\right)=f\left(x_0\right)-G\left(x_0\right)\)

\(=ax_0+b-mx_0-n=\left(a-m\right)x_0+\left(b-n\right)\)

Để \(h\left(x_0\right)=0\Rightarrow\left(a-m\right)x_0+\left(b-n\right)=0\Rightarrow3\left(a-m\right)x_0+3\left(b-n\right)=0\)

Ta đã có \(111a-3b=111m-3n\Rightarrow111\left(a-m\right)-3\left(b-n\right)=0\)

Vậy nên \(3x_0=111\Rightarrow x_0=37\)

Tóm lại \(f\left(37\right)=G\left(37\right)\)

25 tháng 7 2016

thay vào mà trinhhs thôi -_-

26 tháng 7 2016

giải hộ ik,, ko pk giải mới up lên chứ pk up lm j @@@

15 tháng 10 2016

Ta xét : \(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)

\(=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{3x^2-3x+1}=\frac{\left(x+1-x\right)\left(x^2+x^2-2x+1+x^2-x\right)}{3x^2-3x+1}=\frac{3x^2-3x+1}{3x^2-3x+1}=1\)

Áp dụng ta có : 

\(A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+\left[f\left(\frac{2}{2012}\right)+f\left(\frac{2010}{2012}\right)\right]+...+\left[f\left(\frac{1006}{2012}\right)+f\left(\frac{1006}{2012}\right)\right]\)

\(=1+1+...+1\)(Có tất cả 1006 số 1)

\(=1006\)

16 tháng 10 2016

sai rồi bạn ơi