Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho đa thức Q(x)=ax^2+bx+c
a) biết 5a+b+2c =0 chứng minh rằng Q(2)
b)biết Q(x)=0 với mọi x CM a=b=c=0
a,Q(2) = 4a+2b+c
Q(-1)=a-b+c
Ta có: Q(2)+Q(-1)= 4a+2b+c+a-b+c=5a+b+2c
mà 5a+b+2c=0 => Q(2)=-Q(-1)
Nên Q(2).Q(-1)\(\le\)0
Hình như đề sai nha bạn phải là 5a+b=-2c mới đúng
Có \(5a+b=-2c\Rightarrow5a+b+2c=0\)
\(f\left(x\right)=ax^2+bc+c\)
\(\Rightarrow f\left(-1\right)=a.\left(-1\right)+b.\left(-1\right)+c=a-b+c\)
\(\Rightarrow f\left(2\right)=a.2^2+b.2+c=4a+2b+c\)
\(\Rightarrow f\left(-1\right)+f\left(2\right)=a-b+c+4a+2b+c=5a+b+2c=0\)
\(\Rightarrow f\left(-1\right)+f\left(2\right)=0\Rightarrow f\left(-1\right)=-f\left(2\right)\)
Xét \(f\left(-1\right).f\left(2\right)=[-f\left(2\right)].f\left(2\right)=-[f\left(2\right)]^2\le0\)
Vậy \(f\left(-1\right).f\left(2\right)\le0\)
a) Q(2) .Q(-1) =(4a+2b+c).(a-b+c)
Vì 5a+b+2c =0=>a-b+c =-(4a+2b+c)
=>Q(2) .Q(-1) =(4a+2b+c).(a-b+c) = -(4a+2b+c)2 \(\le\)0 dpcm
b) Q(x) =0 với mọi x
+ x =0 =>Q(0) = a.0+b.0 + c =0 => c =0
+=> Q(x) = ax2 + bx = x ( ax +b) =0
Với x khác 0 => ax +b =0
=>Với x =0 => a.0 +b =0 => b =0
=> ax =0 với x khác 0 => a =0
Vậy a=b=c =0.
a, Ta có:
\(Q\left(2\right)=a.2^2+b.2+c=4a+2b+c\) (1)
\(Q\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\) (2)
Từ (1) và (2) \(\Rightarrow Q\left(2\right)+Q\left(-1\right)=4a+2b+c+a-b+c=5a+b+c=0\)
\(\Rightarrow\left[{}\begin{matrix}Q\left(2\right)=Q\left(-1\right)=0\\Q\left(2\right)=-Q\left(-1\right)\end{matrix}\right.\)
\(\Rightarrow Q\left(2\right).Q\left(-1\right)\le0\)
Vậy \(Q\left(2\right).Q\left(-1\right)\le0\)
b, Vì Q(x)=0 với mọi x nên
+) \(Q\left(0\right)=0\Rightarrow a.0^2+b.0+c=0\Rightarrow c=0\)
+) \(Q\left(1\right)=0\Rightarrow a.1^2+b.1+c=0\Rightarrow a+b+0=0\Rightarrow a+b=0\) (3)
\(Q\left(-1\right)=0\Rightarrow a.\left(-1\right)^2+b.\left(-1\right)+c=0\Rightarrow a-b+0=0\Rightarrow a-b=0\) (4)
Từ (3) và (4) suy ra (a+b)+(a-b)=0 \(\Rightarrow2a=0\Rightarrow a=0\Rightarrow b=0\)
Vậy a=b=c=0
Ta có:H(-1)=a-b+c
H(-2)=4a-2b+c
=>H(-1)+H(-2)=5a-3b+2c=0(giả thiết)
=>H(-1)=-H(-2)
=>H(-1).H(-2)=-H(-2).H(-2)=-H(-2)2\(\le\)0
Vậy...
Theo đề bài cho ta có:
H(-1) = a - b - c
H(-2) = 4a - 3b + 2c
\(\Rightarrow\)→\(\Rightarrow\) H(-1) + H(-2)=(a - b + c) +( 4a -3b +2c) = 5a - 3b + 2c = 0
→ H(-1) = -H(-2)
→ H(-1) . H(-2) = -[H(-2)]2
Mà -[H(-2)] 2 lớn hơn hoặc bằng 0 ↔ -[H(-2)]2 ≤ 0
Vậy H(-1) . H(-2) ≤ 0 (đpcm)
1 câu trả lời