Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ M(x)+N(x)=(3x3+3x3)+(x2+2x2)-(3x+x)+(5+9)
=6x3+3x2-4x+14
b/ Ta có: M(x)+N(x)-P(x)=6x3+3x2+2x
=> P(x)=M(x)+N(x)-6x3+3x2+2x=-6x
c/ P(x)=-6x=0
=> x=0 là nghiệm đa thức P(x)
d/ Ta có: x2+4x+5
=x.x+2x+2x+2.2+1
=x(x+2)+2(x+2)+1
=(x+2)(x+2)+1
=(x+2)2+1
Mà (x+2)2\(\ne0\)=> Đa thức trên \(\ge1\)
=> Đa thức trên vô nghiệm.
Cho `P(x) = 0`
`=> x^2 - 6x + 12 = 0`
`=> x^2 - 2x . 3 + 3^2 + 3 = 0`
`=> ( x + 3 )^2 = -3` (Vô lí vì `( x + 3 )^2 >= 0` mà `-3 < 0`)
Vậy đa thức `P(x)` không có nghiệm
Cho P(x)=0P(x)=0
⇒x2−6x+12=0⇒x2-6x+12=0
⇒x2−2x.3+32+3=0⇒x2-2x.3+32+3=0
⇒(x+3)2=−3⇒(x+3)2=-3 (Vô lí vì (x+3)2≥0(x+3)2≥0 mà −3<0-3<0)
Vậy đa thức P(x)P(x) không có nghiệm. Chúc bạn học tốt
f(x)=(2x4-x4)+(5x3-x3-4x3)+(3x2-x2)+1=x4+2x2+1=x4+x2+x2+1=x2(x2+1)+(x2+1)=(x2+1)(x2+1)=(x2+1)2
Ta có: x2>=0(với mọi x)
=>x2+1>=1(với mọi x)
=>(x2+1)2>0(với mọi x)
hay f(x)>0 với mọi x nên đa thức f(x) không có nghiệm
Vậy f(x) không có nghiệm
\(x^2-6x+10\)=\(x^2-3x-3x+9+1\)=x(x-3)-3(x-3)+1=\(\left(x-3\right)^2+1\)
Vì (x-3)2>=0 trong tập hợp số thực nên (x-3)2+1>=1
Vậy \(x^2-6x+10\) không có nghiệm
\(x^2-6x+12\)
\(=x^2-3x-3x+9+3\)
\(=\left(x^2-3x\right)+\left(-3x+9\right)+3\)
\(=x\left(x-3\right)-3\left(x-3\right)+3\)
\(=\left(x-3\right)\left(x-3\right)+3\)
\(=\left(x-3\right)^2+3\)
Ta có: \(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+3>0\)
Vậy \(P\left(x\right)=x^2-6x+12\) không có nghiệm