Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử đa thức \(f\left(x\right)-2022\) có nghiệm nguyên \(x=a\)
\(\Rightarrow f\left(x\right)-2022=\left(x-a\right).g\left(x\right)\) với \(g\left(x\right)\) là đa thức nhận giá trị nguyên khi x nguyên
\(\Rightarrow f\left(x\right)=\left(x-a\right).g\left(x\right)+2022\) (1)
Lại có với a nguyên thì \(\left(2020-a\right)-\left(2019-a\right)=1\) lẻ nên 2020-a và 2019-a luôn khác tính chẵn lẻ
\(\Rightarrow\left(2019-a\right)\left(2020-a\right)\) luôn chẵn
Lần lượt thay \(x=2020\) và \(x=2019\) vào (1) ta được:
\(f\left(2019\right)=\left(2019-a\right).g\left(2019\right)+2022\)
\(f\left(2020\right)=\left(2020-a\right).g\left(2020\right)+2022\)
Nhân vế với vế:
\(f\left(2019\right).f\left(2020\right)=\left(2019-a\right)\left(2020-a\right).g\left(2019\right).g\left(2020\right)+2022\left[\left(2019-a\right)g\left(2019\right)+\left(2020-a\right).g\left(2020\right)+2022\right]\)
\(\Leftrightarrow2021=\left(2019-a\right)\left(2020-a\right).g\left(2019\right).g\left(2020\right)+2022\left[\left(2019-a\right)g\left(2019\right)+\left(2020-a\right).g\left(2020\right)+2022\right]\)
Do \(\left(2019-a\right)\left(2020-a\right)g\left(2019\right).g\left(2020\right)\) chẵn \(\Rightarrow\) vế phải chẵn
Mà vế trái lẻ \(\Rightarrow\) vô lý
Vậy điều giả sử là sai hay đa thức đã cho không có nghiệm nguyên
Lời giải:
Sử dụng công thức nội suy Newton:
$f(x)=a_1+a_2(x-2017)+a_3(x-2017)(x-2018)+a_4(x-2017)(x-2018)(x-t)$ với $a_4$ nguyên dương, $a_1,a_2, a_3, t$ bất kỳ.
Ta có:
$f(2017)=a_1=2018$
$f(2018)=a_1+a_2=2019$
$\Rightarrow a_2=1$. Thay giá trị $a_1,a_2$ vào lại $f(x)$ thì:
$f(x)=x+1+a_3(x-2017)(x-2018)+a_4(x-2017)(x-2018)(x-t)$
Do đó:
$f(2019)=2020+2a_3+2a_4(2019-a)$
$f(2016)=2017+2a_3+2a_4(2016-a)$
$\Rightarrow f(2019)-f(2016)=3+6a_4\vdots 3$ với mọi $a_4$ nguyên dương.
Cũng dễ thấy $3+6a_4>3$ với mọi $a_4$ nguyên dương
Do đó $f(2019)-f(2016)$ là hợp số (đpcm)
Đặt \(f\left(x\right)=\left(x+1\right)P\left(x\right)-x\).
Khi đó \(f\left(k\right)=0\)với mọi \(k=0,1,2,...,2018\)mà \(P\left(x\right)\)có bậc \(2018\)nên \(f\left(x\right)\)có bậc \(2019\)
mà \(f\left(x\right)=0\)tại \(2019\)giá trị nên \(f\left(x\right)=ax\left(x-1\right)\left(x-2\right)...\left(x-2018\right)\).
Với \(x=-1\): \(a.\left(-1\right)\left(-2\right)...\left(-2019\right)=\left(-1+1\right)P\left(-1\right)-\left(-1\right)\)
\(\Leftrightarrow a=-\frac{1}{2019!}\).
\(P\left(2019\right)=\frac{f\left(2019\right)+2019}{2020}=\frac{-1+2019}{2020}=\frac{1009}{1010}\)
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Vì \(\left(x+y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+1\right)^2\ge0\)
\(\Rightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(\left(x+y\right)^{2018}+\left(x-2\right)^{2019}+\left(y+1\right)^{2020}=\left(1-1\right)^{2018}+\left(1-2\right)^{2019}+\left(-1+1\right)^{2020}=-1\)
Ta có:
\(P\left(9\right)-P\left(6\right)=2019\)
\(\Leftrightarrow81a+9b+c-36a-6b-c=2019\)
\(\Leftrightarrow45a+3b=2019\)
Lại có:
\(P\left(10\right)-P\left(7\right)\)
\(=100a+10b+c-49a-7b-c\)
\(=51a+3b\)
\(=\left(45a+3b\right)+6a\)
\(=2019+6a\) là số lẻ vì \(6a\) là số chẵn và \(2019\) lẻ
=> ĐPCM
P/S:Hiện tại chỉ nghĩ ra bài 2