Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ax^2 + bx + c = a'x^2 + b'x +c' với mọi x.(1)
Thay x=0 vào (1) được c=c'. Do đó:
ax^2 + bx + a'x^2 + b'x với mọi x. (2)
Thay x=1 vào (2) được a+b + a'+b'.
Thay x= -1 vào (2) được a-b = a'-b'.
\(\Rightarrow\)2a = 2a'
\(\Rightarrow\)a = a'
\(\Rightarrow\)b = b'
Vậy ta chứng minh đươc a = a' ; b= b' ; c= c'
Ta có : đa thức M = 0 với mọi x
Ta cho x nhận các giá trị x = 0, x = 1, x = -1
Ta có : c = 0, a + b + c = 0 , a - b + c = 0
Do đó : a + b = 0 và a - b = 0
nên a + b + a - b = 0 , suy ra : 2a = 0 \(\Rightarrow\)a = 0 . Ta có : b = 0
Vậy a = b = c = 0
Có: \(M\left(0\right)=a.0^2+b.0+c=c=0\)
\(M\left(1\right)=a.1^2+b.1+c=a+b+c=0\)
\(M\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c=0\)
\(M\left(1\right)-M\left(-1\right)=a+b+c-\left(a-b+c\right)\)
\(=a+b+c-a+b-c=2b=0\)
=> \(b=0\)
=> \(a+b+c=a+0+0=a=0\)
Vậy \(a=b=c=0\)