K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2022

`M = 2x^4 + 3x^2y^2 + y^4 + y^2`

`M = 2x^4 + 2x^2y^2 + x^2y^2 + y^4 + y^2`

`M = 2x^2( x^2 + y^2 ) + ( x^2 + y^2 )y^2 + y^2`

Thay `x^2+y^2=1` vào `M` ta có `:`

`M = 2x^2 . 1 + y^2 . 1 + y^2`

`M = 2x^2 + 2y^2`

`M = 2( x^2 + y^2 )`

`M = 2.1`

`M=2` 

8 tháng 5 2022

Cảm ơn bạn

a, Ta có : \(M=3x^5y^3-4x^4y^3+2x^4y^3+7xy^2-3x^5y^3\)

\(=-2x^4y^3+7xy^2\)

Bậc : 7 

b, Thay x = 1 ; y = 1

\(M=-2.1^4.\left(-1\right)^3+7.1.\left(-1\right)^2\) 

\(=2+7=9\)

11 tháng 3 2018

1, 3x2.(-2y)3 = [3.(-2)](x2.y3) = -6x2y3

Hệ số: -6

phần biến: x2y3

bậc của đơn thức: 5

2,a, \(P=4x^4y^2+\frac{5}{6}+3x^3y^5-3x^4y^2+4y^3-\frac{1}{3}x^3y^5-x^4y^2\)

\(=\left(4x^4y^2-3x^4y^4-x^4y^4\right)+\left(3x^3y^5-\frac{1}{3}x^3y^5\right)+\frac{5}{6}+4y^3\)

\(=\frac{8}{3}x^3y^5+\frac{5}{6}+4y^3\)

b, bậc cua đa thức P là 8

c, Thay x = 2, y = 0,5 vào P ta được

\(P=\frac{8}{3}.2^3.\left(0,5\right)^5+\frac{5}{6}+4.\left(0,5\right)^3\)

\(=\frac{8}{3}.8.\frac{1}{32}+\frac{5}{6}+4.\frac{1}{8}\)

\(=\frac{2}{3}+\frac{5}{6}+\frac{1}{2}\)

\(=2\)

20 tháng 4 2016

M=2x4+3x2y2+y4+y2 = (2x4+2x2y2) +(x2y2+y4)+y2

                                      = 2x2(x2 + y2) + y2(x2 + y2) + y2

                                 = 2x2 + 2y2 = 2(x2 + y2) = 2

Vậy M = 2 

19 tháng 4 2016

Ta có: \(x^2y^2=1\Rightarrow\) x = 1 và y = 1

Thay x=1 và y=1 vào đa thức trên ta có: M = \(2.1^4+3.1+1^4+1^2\)

                                                           M = 2 + 3 + 1 + 1 = 7

7 tháng 5 2020

Mình sửa lại đề tí, ax5x2 chắc gõ nhầm :)

ax5y2 - 3x3y + 7x3y + ax5y2

= 2ax5y2 + 4x3y

Ta có: 2ax5y2 có bậc là 7, 4x3y có bậc là 4

Mà bậc của đa thức trên là 4

\(\Rightarrow\) 2ax5y2 = 0 \(\Rightarrow\) a = 0

Vậy a = 0 thì đa thức ax5y2 - 3x3y + 7x3y + ax5y2 có bậc là 4

Chúc bn học tốt!

7 tháng 5 2020

Ukm. Sorry bạn, bài 1 mình ko biết làm

\n
27 tháng 3 2019

2/ Vì Q có bậc 3 nên \(ax^5y^2-2x^5y^2+bxy^4=\left(a-2\right)x^5y^2+bxy^4\) có hệ số =0

Vậy a=2; b=0.

Câu 2: 

a: \(M=\left(3x^2y^3-3x^2y^3\right)+\left(2x^2y\right)+\left(3xy^2-5xy^2\right)+4\)

\(=2x^2y-2xy^2+4\)

Khi x=-1 và y=2 thì \(M=2\cdot\left(-1\right)^2\cdot2-2\cdot\left(-1\right)\cdot2^2+4\)

\(=4+2\cdot4+4=16\)

b: \(M+N=3xy^2+2x+3\)

\(M-N=4x^2y-7xy^2-2x+5\)

AH
Akai Haruma
Giáo viên
10 tháng 4 2020

Lời giải:

a)

$M=(3x^5y^3-3x^5y^3)+(-4x^4y^3+2x^4y^3)+7xy^2$

$=-2x^4y^3+7xy^2$

Bậc của $M$ chính là bậc của đơn thức có bậc lớn nhất. Tức là bậc của $M$ là:

$4+3=7$

b) Tại $x=1; y=-1$ thì:
$M=-2.1^4(-1)^3+7.1.(-1)^2=2+7=9$